Skip to content

TF2.x implementation of CS-KD (Regularizing Class-wise Predictions via Self-knowledge Distillation, CVPR 2020).

License

Notifications You must be signed in to change notification settings

PaperCodeReview/CSKD-TF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CSKD-TF

This is an unofficial implementation of CS-KD (Regularizing Class-wise Predictions via Self-knowledge Distillation).

Requirements

  • python >= 3.6
  • tensorflow >= 2.2

Training

python main.py \
    --backbone resnet18 \
    --dataset cifar100 \
    --loss cls \
    --temperature 4 \
    --loss_weight 1 \
    --checkpoint \
    --history \
    --lr_scheduler \
    --src_path /path/for/source \
    --data_path /path/for/data \
    --result_path /path/for/result \
    --gpus 0

Evaluation

Results

Our model achieves the following performance on :

ResNet-18

Dataset Top-1 error rates (paper, Cross-entropy) Top-1 error rates (paper, CSKD) Top-1 error rates (ours, Cross-entropy) Top-1 error rates (ours, CSKD)
CIFAR-100 24.71 (± 0.24) 21.99 (± 0.13) 27.73 29.76
TinyImageNet 43.53 (± 0.19) 41.62 (± 0.38) 44.18 43.34
CUB-200-2011 46.00 (± 1.43) 33.28 (± 0.99) - -
Stanford Dogs 36.29 (± 0.32) 30.85 (± 0.28) - -
MIT67 44.75 (± 0.80) 40.45 (± 0.45) - -

Citation

@InProceedings{Yun_2020_CVPR,
author = {Yun, Sukmin and Park, Jongjin and Lee, Kimin and Shin, Jinwoo},
title = {Regularizing Class-Wise Predictions via Self-Knowledge Distillation},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

About

TF2.x implementation of CS-KD (Regularizing Class-wise Predictions via Self-knowledge Distillation, CVPR 2020).

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages