-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f2761ba
commit 972eede
Showing
1 changed file
with
83 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
import torch | ||
import numpy as np | ||
import random | ||
from torch.autograd import Variable | ||
from torch.nn.modules.module import Module | ||
from torch.nn.modules.utils import _single, _pair, _triple | ||
import torch.nn.functional as F | ||
from torch.nn.parameter import Parameter | ||
|
||
|
||
|
||
class my_MaxPool2d(Module): | ||
|
||
|
||
def __init__(self, kernel_size, stride=None, padding=0, dilation=1, | ||
return_indices=False, ceil_mode=False): | ||
super(my_MaxPool2d, self).__init__() | ||
self.kernel_size = kernel_size | ||
self.stride = stride or kernel_size | ||
self.padding = padding | ||
self.dilation = dilation | ||
self.return_indices = return_indices | ||
self.ceil_mode = ceil_mode | ||
|
||
def forward(self, input): | ||
input = input.transpose(3,1) | ||
|
||
|
||
input = F.max_pool2d(input, self.kernel_size, self.stride, | ||
self.padding, self.dilation, self.ceil_mode, | ||
self.return_indices) | ||
input = input.transpose(3,1).contiguous() | ||
|
||
return input | ||
|
||
def __repr__(self): | ||
kh, kw = _pair(self.kernel_size) | ||
dh, dw = _pair(self.stride) | ||
padh, padw = _pair(self.padding) | ||
dilh, dilw = _pair(self.dilation) | ||
padding_str = ', padding=(' + str(padh) + ', ' + str(padw) + ')' \ | ||
if padh != 0 or padw != 0 else '' | ||
dilation_str = (', dilation=(' + str(dilh) + ', ' + str(dilw) + ')' | ||
if dilh != 0 and dilw != 0 else '') | ||
ceil_str = ', ceil_mode=' + str(self.ceil_mode) | ||
return self.__class__.__name__ + '(' \ | ||
+ 'kernel_size=(' + str(kh) + ', ' + str(kw) + ')' \ | ||
+ ', stride=(' + str(dh) + ', ' + str(dw) + ')' \ | ||
+ padding_str + dilation_str + ceil_str + ')' | ||
|
||
|
||
class my_AvgPool2d(Module): | ||
def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False, | ||
count_include_pad=True): | ||
super(my_AvgPool2d, self).__init__() | ||
self.kernel_size = kernel_size | ||
self.stride = stride or kernel_size | ||
self.padding = padding | ||
self.ceil_mode = ceil_mode | ||
self.count_include_pad = count_include_pad | ||
|
||
def forward(self, input): | ||
input = input.transpose(3,1) | ||
input = F.avg_pool2d(input, self.kernel_size, self.stride, | ||
self.padding, self.ceil_mode, self.count_include_pad) | ||
input = input.transpose(3,1).contiguous() | ||
|
||
return input | ||
|
||
|
||
def __repr__(self): | ||
return self.__class__.__name__ + '(' \ | ||
+ 'kernel_size=' + str(self.kernel_size) \ | ||
+ ', stride=' + str(self.stride) \ | ||
+ ', padding=' + str(self.padding) \ | ||
+ ', ceil_mode=' + str(self.ceil_mode) \ | ||
+ ', count_include_pad=' + str(self.count_include_pad) + ')' | ||
|
||
|
||
m = my_MaxPool2d((1, 32), stride=(1, 32)) | ||
input = Variable(torch.randn(3, 2208, 7, 7)) | ||
output = m(input) | ||
print(output.size()) |