-
Notifications
You must be signed in to change notification settings - Fork 180
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
feat(opentrons-ai-server): anthropic integration #16881
Merged
Merged
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
import uuid | ||
from pathlib import Path | ||
from typing import Any, Dict, List | ||
|
||
import requests | ||
import structlog | ||
from anthropic import Anthropic | ||
from anthropic.types import Message, MessageParam | ||
from ddtrace import tracer | ||
|
||
from api.domain.config_anthropic import DOCUMENTS, PROMPT, SYSTEM_PROMPT | ||
from api.settings import Settings | ||
|
||
settings: Settings = Settings() | ||
logger = structlog.stdlib.get_logger(settings.logger_name) | ||
ROOT_PATH: Path = Path(Path(__file__)).parent.parent.parent | ||
|
||
|
||
class AnthropicPredict: | ||
def __init__(self, settings: Settings) -> None: | ||
self.settings: Settings = settings | ||
self.client: Anthropic = Anthropic(api_key=settings.anthropic_api_key.get_secret_value()) | ||
self.model_name: str = settings.anthropic_model_name | ||
self.system_prompt: str = SYSTEM_PROMPT | ||
self.path_docs: Path = ROOT_PATH / "api" / "storage" / "docs" | ||
self._messages: List[MessageParam] = [ | ||
{ | ||
"role": "user", | ||
"content": [ | ||
{"type": "text", "text": DOCUMENTS.format(doc_content=self.get_docs()), "cache_control": {"type": "ephemeral"}} # type: ignore | ||
], | ||
} | ||
] | ||
self.tools: List[Dict[str, Any]] = [ | ||
{ | ||
"name": "simulate_protocol", | ||
"description": "Simulates the python protocol on user input. Returned value is text indicating if protocol is successful.", | ||
"input_schema": { | ||
"type": "object", | ||
"properties": { | ||
"protocol": {"type": "string", "description": "protocol in python for simulation"}, | ||
}, | ||
"required": ["protocol"], | ||
}, | ||
} | ||
] | ||
|
||
@tracer.wrap() | ||
def get_docs(self) -> str: | ||
""" | ||
Processes documents from a directory and returns their content wrapped in XML tags. | ||
Each document is wrapped in <document> tags with metadata subtags. | ||
|
||
Returns: | ||
str: XML-formatted string containing all documents and their metadata | ||
""" | ||
logger.info("Getting docs", extra={"path": str(self.path_docs)}) | ||
xml_output = ["<documents>"] | ||
for file_path in self.path_docs.iterdir(): | ||
try: | ||
content = file_path.read_text(encoding="utf-8") | ||
document_xml = [ | ||
"<document>", | ||
f" <source>{file_path.name}</source>", | ||
" <document_content>", | ||
f" {content}", | ||
" </document_content>", | ||
"</document>", | ||
] | ||
xml_output.extend(document_xml) | ||
|
||
except Exception as e: | ||
logger.error("Error procesing file", extra={"file": file_path.name, "error": str(e)}) | ||
continue | ||
|
||
xml_output.append("</documents>") | ||
return "\n".join(xml_output) | ||
|
||
@tracer.wrap() | ||
def generate_message(self, max_tokens: int = 4096) -> Message: | ||
|
||
response = self.client.messages.create( | ||
model=self.model_name, | ||
system=self.system_prompt, | ||
max_tokens=max_tokens, | ||
messages=self._messages, | ||
tools=self.tools, # type: ignore | ||
extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, | ||
) | ||
|
||
logger.info( | ||
"Token usage", | ||
extra={ | ||
"input_tokens": response.usage.input_tokens, | ||
"output_tokens": response.usage.output_tokens, | ||
"cache_read": getattr(response.usage, "cache_read_input_tokens", "---"), | ||
"cache_create": getattr(response.usage, "cache_creation_input_tokens", "---"), | ||
}, | ||
) | ||
return response | ||
|
||
@tracer.wrap() | ||
def predict(self, prompt: str) -> str | None: | ||
try: | ||
self._messages.append({"role": "user", "content": PROMPT.format(USER_PROMPT=prompt)}) | ||
response = self.generate_message() | ||
if response.content[-1].type == "tool_use": | ||
tool_use = response.content[-1] | ||
self._messages.append({"role": "assistant", "content": response.content}) | ||
result = self.handle_tool_use(tool_use.name, tool_use.input) # type: ignore | ||
self._messages.append( | ||
{ | ||
"role": "user", | ||
"content": [ | ||
{ | ||
"type": "tool_result", | ||
"tool_use_id": tool_use.id, | ||
"content": result, | ||
} | ||
], | ||
} | ||
) | ||
follow_up = self.generate_message() | ||
response_text = follow_up.content[0].text # type: ignore | ||
self._messages.append({"role": "assistant", "content": response_text}) | ||
return response_text | ||
|
||
elif response.content[0].type == "text": | ||
response_text = response.content[0].text | ||
self._messages.append({"role": "assistant", "content": response_text}) | ||
return response_text | ||
|
||
logger.error("Unexpected response type") | ||
return None | ||
except IndexError as e: | ||
logger.error("Invalid response format", extra={"error": str(e)}) | ||
return None | ||
except Exception as e: | ||
logger.error("Error in predict method", extra={"error": str(e)}) | ||
return None | ||
|
||
@tracer.wrap() | ||
def handle_tool_use(self, func_name: str, func_params: Dict[str, Any]) -> str: | ||
if func_name == "simulate_protocol": | ||
results = self.simulate_protocol(**func_params) | ||
return results | ||
|
||
logger.error("Unknown tool", extra={"tool": func_name}) | ||
raise ValueError(f"Unknown tool: {func_name}") | ||
|
||
@tracer.wrap() | ||
def reset(self) -> None: | ||
self._messages = [ | ||
{ | ||
"role": "user", | ||
"content": [ | ||
{"type": "text", "text": DOCUMENTS.format(doc_content=self.get_docs()), "cache_control": {"type": "ephemeral"}} # type: ignore | ||
], | ||
} | ||
] | ||
|
||
@tracer.wrap() | ||
def simulate_protocol(self, protocol: str) -> str: | ||
url = "https://Opentrons-simulator.hf.space/protocol" | ||
protocol_name = str(uuid.uuid4()) + ".py" | ||
data = {"name": protocol_name, "content": protocol} | ||
hf_token: str = settings.huggingface_api_key.get_secret_value() | ||
headers = {"Content-Type": "application/json", "Authorization": "Bearer {}".format(hf_token)} | ||
response = requests.post(url, json=data, headers=headers) | ||
|
||
if response.status_code != 200: | ||
logger.error("Simulation request failed", extra={"status": response.status_code, "error": response.text}) | ||
return f"Error: {response.text}" | ||
|
||
response_data = response.json() | ||
if "error_message" in response_data: | ||
logger.error("Simulation error", extra={"error": response_data["error_message"]}) | ||
return str(response_data["error_message"]) | ||
elif "protocol_name" in response_data: | ||
return str(response_data["run_status"]) | ||
else: | ||
logger.error("Unexpected response", extra={"response": response_data}) | ||
return "Unexpected response" | ||
|
||
|
||
def main() -> None: | ||
"""Intended for testing this class locally.""" | ||
import sys | ||
from pathlib import Path | ||
|
||
# # Add project root to Python path | ||
root_dir = Path(__file__).parent.parent.parent | ||
sys.path.insert(0, str(root_dir)) | ||
|
||
from rich import print | ||
from rich.prompt import Prompt | ||
|
||
settings = Settings() | ||
llm = AnthropicPredict(settings) | ||
prompt = Prompt.ask("Type a prompt to send to the Anthropic API:") | ||
completion = llm.predict(prompt) | ||
print(completion) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
As discussed we will circle back to these
# type: ignore