Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tuning for multiple columns part 2: Find candidate parameters for multiple aggregation #524

Merged
merged 8 commits into from
Sep 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions analysis/data_structures.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,10 @@ class MultiParameterConfiguration:
"""
max_partitions_contributed: Sequence[int] = None
max_contributions_per_partition: Sequence[int] = None
min_sum_per_partition: Sequence[float] = None
max_sum_per_partition: Sequence[float] = None
min_sum_per_partition: Union[Sequence[float],
Sequence[Sequence[float]]] = None
max_sum_per_partition: Union[Sequence[float],
Sequence[Sequence[float]]] = None
noise_kind: Sequence[pipeline_dp.NoiseKind] = None
partition_selection_strategy: Sequence[
pipeline_dp.PartitionSelectionStrategy] = None
Expand Down
42 changes: 24 additions & 18 deletions analysis/dp_strategy_selector.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
"""Choosing DP Strategy (i.e. noise_kind, partition selection strategy etc)
based on contribution bounding params."""
from dataclasses import dataclass
from typing import Optional
from typing import List, Optional

import pipeline_dp
from pipeline_dp import aggregate_params
Expand All @@ -41,38 +41,45 @@ class DPStrategySelector:
"""

def __init__(self, epsilon: float, delta: float,
metric: Optional[pipeline_dp.Metric],
is_public_partitions: bool):
metrics: List[pipeline_dp.Metric], is_public_partitions: bool):
input_validators.validate_epsilon_delta(epsilon, delta,
"DPStrategySelector")
if delta == 0 and not is_public_partitions:
raise ValueError("DPStrategySelector: when private partition "
"selection is used, delta must be positive")
self._epsilon = epsilon
self._delta = delta
self._metric = metric
self._metrics = metrics
self._is_public_partitions = is_public_partitions

@property
def is_public_partitions(self) -> bool:
return self._is_public_partitions

@property
def metric(self) -> Optional[pipeline_dp.Metric]:
return self._metric
def metrics(self) -> List[pipeline_dp.Metric]:
return self._metrics

def get_dp_strategy(
self, sensitivities: dp_computations.Sensitivities) -> DPStrategy:
"""Chooses DPStrategy for given sensitivities."""
if self._metric is None:
if not self._metrics:
# This is Select partitions case.
return self._get_strategy_for_select_partition(sensitivities.l0)

n_metrics = len(self._metrics)
# Having n metrics is equivalent to multiplying of contributing for
# n times more partitions
scaled_sensitivities = dp_computations.Sensitivities(
l0=sensitivities.l0 * n_metrics, linf=sensitivities.linf)

if self._is_public_partitions:
return self._get_dp_strategy_for_public_partitions(sensitivities)
if self.use_post_aggregation_thresholding(self._metric):
return self._get_dp_strategy_for_public_partitions(
scaled_sensitivities)
if self.use_post_aggregation_thresholding(self._metrics):
return self._get_dp_strategy_with_post_aggregation_threshold(
sensitivities.l0)
return self._get_dp_strategy_private_partition(sensitivities)
scaled_sensitivities.l0)
return self._get_dp_strategy_private_partition(scaled_sensitivities)

def _get_strategy_for_select_partition(self,
l0_sensitivity: int) -> DPStrategy:
Expand All @@ -92,7 +99,7 @@ def _get_dp_strategy_for_public_partitions(

def _get_dp_strategy_with_post_aggregation_threshold(
self, l0_sensitivity: int) -> DPStrategy:
assert self._metric == pipeline_dp.Metrics.PRIVACY_ID_COUNT
assert pipeline_dp.Metrics.PRIVACY_ID_COUNT in self._metrics
# Half delta goes to the noise, the other half for partition selection.
# For more details see
# https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
Expand Down Expand Up @@ -144,9 +151,9 @@ def select_noise_kind(
return pipeline_dp.NoiseKind.GAUSSIAN
return pipeline_dp.NoiseKind.LAPLACE

def use_post_aggregation_thresholding(self,
metric: pipeline_dp.Metric) -> bool:
return metric == pipeline_dp.Metrics.PRIVACY_ID_COUNT
def use_post_aggregation_thresholding(
self, metrics: List[pipeline_dp.Metric]) -> bool:
return pipeline_dp.Metrics.PRIVACY_ID_COUNT in metrics

def select_partition_selection_strategy(
self, epsilon: float, delta: float,
Expand Down Expand Up @@ -191,6 +198,5 @@ def create_mechanism(strategy: pipeline_dp.PartitionSelectionStrategy):
class DPStrategySelectorFactory:

def create(self, epsilon: float, delta: float,
metric: Optional[pipeline_dp.Metric],
is_public_partitions: bool):
return DPStrategySelector(epsilon, delta, metric, is_public_partitions)
metrics: List[pipeline_dp.Metric], is_public_partitions: bool):
return DPStrategySelector(epsilon, delta, metrics, is_public_partitions)
Loading
Loading