Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix bug of group norm and layer norm for npu #10609

Merged
merged 5 commits into from
Dec 26, 2024

Conversation

crazy-JiangDongHua
Copy link
Contributor

No description provided.

Copy link
Contributor

Code got formatted by CI. Please request CI again if you still want to have this PR merged. If the PR is from a forked repo, please download the patch files from the GitHub Actions web page and apply them locally.

oneflow/user/ops/group_norm_op.cpp Outdated Show resolved Hide resolved
oneflow/user/ops/layer_norm_op.cpp Outdated Show resolved Hide resolved
Copy link
Contributor

Code got formatted by CI. Please request CI again if you still want to have this PR merged. If the PR is from a forked repo, please download the patch files from the GitHub Actions web page and apply them locally.

Copy link
Contributor

Copy link
Contributor

Speed stats:
GPU Name: NVIDIA GeForce RTX 3080 Ti 

❌ OneFlow resnet50 time: 43.8ms (= 4383.6ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 57.4ms (= 5737.8ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.31 (= 57.4ms / 43.8ms)

OneFlow resnet50 time: 26.2ms (= 2616.8ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 37.5ms (= 3746.0ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.43 (= 37.5ms / 26.2ms)

OneFlow resnet50 time: 17.8ms (= 3563.0ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 35.7ms (= 7132.6ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 2.00 (= 35.7ms / 17.8ms)

OneFlow resnet50 time: 16.4ms (= 3281.9ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 30.9ms (= 6174.4ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.88 (= 30.9ms / 16.4ms)

OneFlow resnet50 time: 14.9ms (= 2976.9ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 29.8ms (= 5965.0ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 2.00 (= 29.8ms / 14.9ms)

OneFlow swin dataloader time: 0.200s (= 39.974s / 200, num_workers=1)
PyTorch swin dataloader time: 0.128s (= 25.511s / 200, num_workers=1)
Relative speed: 0.638 (= 0.128s / 0.200s)

OneFlow swin dataloader time: 0.059s (= 11.842s / 200, num_workers=4)
PyTorch swin dataloader time: 0.033s (= 6.511s / 200, num_workers=4)
Relative speed: 0.550 (= 0.033s / 0.059s)

OneFlow swin dataloader time: 0.031s (= 6.181s / 200, num_workers=8)
PyTorch swin dataloader time: 0.017s (= 3.409s / 200, num_workers=8)
Relative speed: 0.551 (= 0.017s / 0.031s)

❌ OneFlow resnet50 time: 49.7ms (= 4968.4ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 63.9ms (= 6390.7ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.29 (= 63.9ms / 49.7ms)

OneFlow resnet50 time: 36.2ms (= 3623.9ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 46.3ms (= 4632.5ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.28 (= 46.3ms / 36.2ms)

OneFlow resnet50 time: 27.8ms (= 5562.2ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 40.9ms (= 8174.6ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.47 (= 40.9ms / 27.8ms)

OneFlow resnet50 time: 25.2ms (= 5048.6ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 39.9ms (= 7981.2ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.58 (= 39.9ms / 25.2ms)

OneFlow resnet50 time: 25.1ms (= 5022.8ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 35.7ms (= 7147.7ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.42 (= 35.7ms / 25.1ms)

Copy link
Contributor

1 similar comment
Copy link
Contributor

Copy link
Contributor

Speed stats:

Copy link
Contributor

Speed stats:
GPU Name: NVIDIA GeForce RTX 3080 Ti 

❌ OneFlow resnet50 time: 43.7ms (= 4371.2ms / 100, input_shape=[16, 3, 224, 224])
PyTorch resnet50 time: 57.5ms (= 5752.0ms / 100, input_shape=[16, 3, 224, 224])
✔️ Relative speed: 1.32 (= 57.5ms / 43.7ms)

OneFlow resnet50 time: 26.2ms (= 2615.4ms / 100, input_shape=[8, 3, 224, 224])
PyTorch resnet50 time: 37.7ms (= 3771.1ms / 100, input_shape=[8, 3, 224, 224])
✔️ Relative speed: 1.44 (= 37.7ms / 26.2ms)

OneFlow resnet50 time: 18.1ms (= 3619.3ms / 200, input_shape=[4, 3, 224, 224])
PyTorch resnet50 time: 34.3ms (= 6858.9ms / 200, input_shape=[4, 3, 224, 224])
✔️ Relative speed: 1.90 (= 34.3ms / 18.1ms)

OneFlow resnet50 time: 17.4ms (= 3476.5ms / 200, input_shape=[2, 3, 224, 224])
PyTorch resnet50 time: 31.2ms (= 6230.8ms / 200, input_shape=[2, 3, 224, 224])
✔️ Relative speed: 1.79 (= 31.2ms / 17.4ms)

OneFlow resnet50 time: 17.5ms (= 3501.2ms / 200, input_shape=[1, 3, 224, 224])
PyTorch resnet50 time: 28.5ms (= 5708.2ms / 200, input_shape=[1, 3, 224, 224])
✔️ Relative speed: 1.63 (= 28.5ms / 17.5ms)

OneFlow swin dataloader time: 0.199s (= 39.707s / 200, num_workers=1)
PyTorch swin dataloader time: 0.127s (= 25.441s / 200, num_workers=1)
Relative speed: 0.641 (= 0.127s / 0.199s)

OneFlow swin dataloader time: 0.055s (= 10.932s / 200, num_workers=4)
PyTorch swin dataloader time: 0.033s (= 6.583s / 200, num_workers=4)
Relative speed: 0.602 (= 0.033s / 0.055s)

OneFlow swin dataloader time: 0.031s (= 6.296s / 200, num_workers=8)
PyTorch swin dataloader time: 0.017s (= 3.312s / 200, num_workers=8)
Relative speed: 0.526 (= 0.017s / 0.031s)

❌ OneFlow resnet50 time: 49.3ms (= 4925.4ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 66.5ms (= 6648.5ms / 100, input_shape=[16, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.35 (= 66.5ms / 49.3ms)

OneFlow resnet50 time: 36.6ms (= 3663.9ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 45.2ms (= 4520.9ms / 100, input_shape=[8, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.23 (= 45.2ms / 36.6ms)

OneFlow resnet50 time: 27.3ms (= 5466.5ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 40.5ms (= 8094.9ms / 200, input_shape=[4, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.48 (= 40.5ms / 27.3ms)

OneFlow resnet50 time: 25.1ms (= 5025.5ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 38.9ms (= 7783.7ms / 200, input_shape=[2, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.55 (= 38.9ms / 25.1ms)

OneFlow resnet50 time: 24.8ms (= 4968.5ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
PyTorch resnet50 time: 36.0ms (= 7204.5ms / 200, input_shape=[1, 3, 224, 224], ddp, world size=2)
✔️ Relative speed: 1.45 (= 36.0ms / 24.8ms)

@crazy-JiangDongHua crazy-JiangDongHua merged commit f7fa76f into master Dec 26, 2024
20 checks passed
@crazy-JiangDongHua crazy-JiangDongHua deleted the fix_bug_of_groupnorm_and_layernorm_for_npu branch December 26, 2024 03:01
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants