Skip to content

Releases: Oneflow-Inc/libai

LiBai v0.3.0 Release

11 Mar 06:50
1185ad9
Compare
Choose a tag to compare

v0.3.0 (03/11/2024)

New Features:

  • Support mock transformers, see Mock transformers
  • Support lm-evaluation-harness for model evaluation
  • User Experience Optimization

New Supported Models:

  • These models are natively supported by libai
Models 2D(tp+pp) Inference 3D Parallel Training
BLOOM -
ChatGLM
Couplets
DALLE2 -
Llama2
MAE
Stable_Diffusion - -

New Mock Models:

  • These models are extended and implemented by libai through mocking transformers.
Models Tensor Parallel Pipeline Parallel
BLOOM -
GPT2 -
LLAMA -
LLAMA2 -
Baichuan -
OPT -

LiBai v0.2.0 Release

08 Jul 03:06
8fd79ee
Compare
Choose a tag to compare

v0.2.0 (07/07/2022)

New Features:

  • Support evaluation enabled and set eval_iter
  • Support customized sampler in config.py
  • Support rdma for pipeline-model-parallel
  • Support multi fused kernel
    • fused_scale_mask_softmax_dropout
    • fused_scale_tril_softmax_mask_scale
    • fused_self_attention in branch libai_bench
  • User Experience Optimization
  • Optimization for training throughput, see benchmark for more details

New Supported Models:

  • Support 3D parallel Roberta model
  • Support 2D parallel (data parallel + tensor model parallel) SimCSE model
  • Support Data parallel MAE model
  • Support Data parallel MOCOV3 model

LiBai v0.1.0 Release

22 Mar 07:37
ba20850
Compare
Choose a tag to compare

Some major features:

  • Data Parallelism
  • 1D Tensor Parallelism
  • Pipeline Parallelism
  • Unified Distributed Layers for single-GPU and multi-GPU
  • "LazyConfig" system for more flexible syntax and no predefined structures
  • Easy-to-use trainer and engine
  • CV & NLP Data Preprocessing
  • Mixed Precision Training
  • Activation Checkpointing
  • Gradient Accumulation
  • Gradient Clipping
  • Zero Redundancy Optimizer (ZeRO)

Model_Zoo

  • Bert (3D Parallelism)
  • GPT-2 (3D Parallelism)
  • ViT (3D Parallelism)
  • Swin-Transformer (data parallelism)
  • Add finetune task in projects/
  • Add text classification in projects