Skip to content

Commit

Permalink
[NoCode] Aestethical changes in nuwro, kaskada, and kaskada.txt
Browse files Browse the repository at this point in the history
  • Loading branch information
KajetanNiewczas committed Sep 25, 2023
1 parent 24c2f3e commit c8d29a6
Show file tree
Hide file tree
Showing 6 changed files with 393 additions and 295 deletions.
238 changes: 121 additions & 117 deletions data/kaskada.txt
Original file line number Diff line number Diff line change
@@ -1,122 +1,126 @@
# The paramaters file for the NuWro neutrino interactions simulation software
################################################################################
#
# Example input for the Cascade Mode of the NuWro event generator
#
# the meaning of the paramaters descrobed in commented lines
################################################################################

# The number of events to be generated:
number_of_events = 100000

# Control the random seed persistence:
random_seed = 0 // 0 - use time(NULL) as a seed for random number generator
#random_seed = 1 // 1 - read state from file "random_seed" or use time(NULL)
# if file not found
#random_seed = 12312 // others - use given number as the seed for the generator

################################################################################
#
# Beam specification
#
################################################################################

# *default* scattering of 300 MeV positive pions

# Define the beam by hand:
# (single type, monoenergetic [MeV], hadron PDG)
beam_type = 0
beam_energy = 300
beam_particle = 211

# The number of events to generate i.e.

number_of_test_events = 1000
number_of_events = 100000

random_seed= 0 // 0 - use time(NULL) as a seed for random number generator
#random_seed= 1 // 1 - read state from file "random_seed" or use seed=time(NULL) if file not found
#random_seed=12312 // other values - use given number as the seed for the generator

# beam_energy is the beam energy in MeV
# Can also be given in the form of the distribution
# Emin Emax val1 val2 ... valn


################################################################################################
beam_type = 0
# total energy,not a kinetic energy
#beam_energy = 378.6
#beam_energy = 301.6
beam_energy = 257.6

# the PDG code of the beam particle
# 12 - nu_e
# 14 - nu_mu
# 16 - nu_tau
# -12 - anti_nu_e
# -14 - anti_nu_mu
# -16 - anti_nu_tau

beam_particle = 211

# The direction of the beam given as a 3 coordinates of the vector alligned with the beam

beam_direction = 0 0 1

#beam_placement = 0 // nucleus center
#beam_placement = 1 // transparency mode: interaction starts at random nucleon
beam_placement = 2 // scattering mode - start just under the surface of the nucleus

# The following parameters specify the target

# number of protons
nucleus_p = 6

# number of neutrons
nucleus_n = 6

#proc_dis
# density profile of the target
# 1 - means constant density
# w wiekszosci do zawieszenia; zostawic tylko kf oraz Eb

# nucleus_density = 1
nucleus_E_b = 27 // MeV
# wykorzystany w qelevent.cc, target.h dalej jako Eb
nucleus_kf = 225 // MeV

nucleus_model = 1 // 0 - flatnucleus, 1 - /anynucleus
nucleus_target = 2

#####################################################################################################
#proc_qel_nc = 1
#proc_qel_cc = 1
#proc_qel = 1
#proc_dis = 0

#dynamics
dyn_qel_cc =1
dyn_qel_nc =1
dyn_res_cc =1
dyn_res_nc =1
dyn_dis_cc =1
dyn_dis_nc =1
dyn_coh_cc =1
dyn_coh_nc =1

qel_cc_axial_mass= 1030 //MeV
qel_nc_axial_mass= 1030 //MeV

delta_FF_set=11
# The choice of Delta production FF
# 1 - Graczyk Sobczyk C5A=0.8228
# 11 - Graczyk Sobczyk C5A=1.2
# 2 - Paschos Lalakulich 2.12 MA=1.05 BNL fit
# 3 - Paschos Lalakulich 2.12 MA=0.84 ANL fit
# 4 Paschos Lalakulich page 4, bottom right
# 5 - Paschos Lalakulich page 5, top left
# 6 - Eq.(13), L. Alvarez-Ruso, S. K. Singh, M. J. Vincente Vascas, Phys. Rev. C 57, (1998) 2693

spp_precision= 500
res_dis_cut = 1600 //res dis boundary in MeV

# qel_kinematics = 0 // relativistic Czarek
# qel_kinematics = 1 //
# qel_kinematics = 2 //
# qel_kinematics = 3 //momentum dependent kinematics
# qel_kinematics = 4 //momentum dependent kinematics with outgoing nucleon energy edjustment

# The choice of the kinematics for the qel interaction vertex
# 0 - relativistic
# 1 -
# 2 - bodek
# 3 - momentum dependent potential
# 4 - Fermi gas with

coh_mass_correction = 1 //Rein Sehgal correction to CC coherent single pion production

# qel_relat = 0 // relativistic correction is on
# qel_relat = 1 // relativistic correction is off

kaskada_on = 1 // use kaskade in qasielastic events
pauli_blocking = 1 // enable Pauli blocking
#xsec = 1
formation_zone = nofz
first_step = 0
# The direction of the beam given as the corresponding vector
beam_direction = 0 0 1

# The incident particle starting point
#beam_placement = 0 // nucleus center
#beam_placement = 1 // random nucleon's position: transparency mode
beam_placement = 2 // just under the surface of the nucleus: scattering mode

################################################################################
#
# Target specification
#
################################################################################

# *default* predefined LFG Carbon target "C.txt"

# Define the nucleus by hand:
#nucleus_p = 6
#nucleus_n = 6

# Models for the description of nucleus as a target:
#nucleus_target = 0 // free target
#nucleus_target = 1 // Fermi gas
#nucleus_target = 2 // local Fermi gas
#nucleus_target = 3 // Bodek-Ritchie Fermi gas
#nucleus_target = 4 // "effective" spectral function (carbon or oxygen)
#nucleus_target = 5 // deuterium
#nucleus_target = 6 // effective potential

# Historical options to define the Fermi gas:
#nucleus_E_b = 34 // [MeV] binding energy
#nucleus_kf = 220 // [MeV] Fermi momentum, used in Fermi gas model

# Enable Pauli blocking:
pauli_blocking = 1 // enable (1) or not (0) Pauli blocking

# It is convenient to include one of the predefined target specifications
# with the @ char (or modify them as needed):
@target/C.txt
#@target/CH.txt
#@target/ND280_975.txt
#@target/proton.txt
#@target/neutron.txt
#@target/CH2.txt

################################################################################
#
# Final state interaction parameters
#
################################################################################

# Turn on the cascade:
kaskada_on = 1 // use (1) or not (0) the cascade

# Models for the description of nucleus in the cascade:
#nucleus_model = 0 // "flatnucleus" ball with constant density
nucleus_model = 1 // "anynucleus" i.e. realistic density profile

# Total work of the cascade W (Eb = Ef + W);
kaskada_w = 7 // literature [7 MeV, 9 MeV]

# Other cascade parameters:
kaskada_writeall = 0 // store all intermedate particles in the event.all vector
tau = 8.0 //
step = 0.2 // length of one step in cascade

# Global rescaling of the nucleon mean free path in the cascade;
# It has been checked against transparency data that
# the uncertainty here is not larger than +- 30%
# -> see Phys.Rev. C 100 (2019) 015505
kaskada_NN_mfp_scale = 1.0

# Input data for the cascade:
kaskada_NN_xsec = 2 // NN cross sections: (0) Metropolis et al.,
# (2) PDG2016, (3) Liege
kaskada_NN_inel = 2 // NN inelastic frac.: (0) Metropolis et al.,
# (1) Oset et al., (2) PDG2016 & Bystricky et al.
kaskada_NN_angle = 3 // NN angular distr.: (0) Metropolis et al., (3) Liege
kaskada_NN_corr = 1 // Effective density: (0) No correlations,
# (1) Phys.Rev. C 100 (2019) 015505
kaskada_piN_xsec = 1 // Full set of input data for pions: (0) Metropolis et al.,
# (1) Oset et al.

# Formation zone parameters:
first_step = 0 // use (1) or not (0) the model for primary particles
formation_zone = fz-new // the recommended formation zone option
#formation_zone = nofz
#formation_zone = fz
#formation_zone = trans
#formation_zone = skat8
#formation_zone = cohl
#formation_zone = cosyn
#formation_zone = ranft
#formation_zone = rl
#formation_zone = delta
#formation_zone = const
#formation_length = 1 // formation length in fm for formation_zone = const
Loading

0 comments on commit c8d29a6

Please sign in to comment.