The nvImageCodec is an open-source library of accelerated codecs with unified interface. It is designed as a framework for extension modules which delivers codec plugins.
This nvImageCodec release includes the following key features:
- Unified API for decoding and encoding images
- Batch processing, with variable shape and heterogeneous formats images
- Codec prioritization with automatic fallback
- Builtin parsers for image format detection: jpeg, jpeg2000, tiff, bmp, png, pnm, webp
- Python bindings
- Zero-copy interfaces to CV-CUDA, PyTorch and CuPy
- End-end accelerated sample applications for common image transcoding
Currently there are following native codec extensions:
-
nvjpeg_ext
- Hardware jpeg decoder
- CUDA jpeg decoder
- CUDA lossless jpeg decoder
- CUDA jpeg encoder
-
nvjpeg2k_ext
- CUDA jpeg 2000 decoder (including High Throughput Jpeg2000)
- CUDA jpeg 2000 encoder
-
nvbmp_ext (as an example extension module)
- CPU bmp reader
- CPU bmp writer
-
nvpnm_ext (as an example extension module)
- CPU pnm (ppm, pbm, pgm) writer
Additionally as a fallback there are following 3rd party codec extensions:
-
libturbo-jpeg_ext
- CPU jpeg decoder
-
libtiff_ext
- CPU tiff decoder
-
opencv_ext
- CPU jpeg decoder
- CPU jpeg2k_decoder
- CPU png decoder
- CPU bmp decoder
- CPU pnm decoder
- CPU tiff decoder
- CPU webp decoder
This section describes the recommended dependencies to use nvImageCodec.
- Linux distro:
- x86_64
- Debian 11, 12
- Fedora 39
- RHEL 8, 9
- OpenSUSE 15
- SLES 15
- Ubuntu 20.04, 22.04
- WSL2 Ubuntu 20.04
- arm64-sbsa
- RHEL 8, 9
- SLES 15
- Ubuntu 20.04, 22.04
- aarch64-jetson (CUDA Toolkit >= 12.0)
- Ubuntu 22.04
- x86_64
- Windows
- NVIDIA driver >= 520.56.06
- CUDA Toolkit > = 11.8
- nvJPEG2000 >= 0.8.0
- Python >= 3.8
You can download and install the appropriate built binary packages from the nvImageCodec Developer Page or install nvImageCodec Python from PyPI as it is described below.
pip install nvidia-nvimgcodec-cu11
pip install nvidia-nvimgcodec-cu12
pip install nvidia-nvimgcodec-tegra-cu12
If you do not have CUDA Toolkit installed, or you would like install nvJPEG library independently, you can use the instructions described below.
Install the nvidia-pyindex module
pip install nvidia-pyindex
Install nvJPEG for CUDA 11.x
pip install nvidia-nvjpeg-cu11
Install nvJPEG for CUDA 12.x
pip install nvidia-nvjpeg-cu12
nvJPEG2000 library can be installed in the system, or installed as a Python package. For the latter, follow the instructions below.
Install nvJPEG2000 for CUDA 11.x
pip install nvidia-nvjpeg2k-cu11
Install nvJPEG2000 for CUDA 12.x
pip install nvidia-nvjpeg2k-cu12
Install nvJPEG2000 for CUDA 12.x on Tegra platforms
pip install nvidia-nvjpeg2k-tegra-cu12
Please see also nvJPEG2000 installation documentation for more information
NVIDIA nvImageCodec Documentation
- Linux
- GCC >= 9.4
- cmake >= 3.18
- patchelf >= 0.17.2
- Windows
- Dependencies for extensions. If you would not like to build particular extension you can skip it.
- nvJPEG2000 >= 0.8.0
- libjpeg-turbo >= 2.0.0
- libtiff >= 4.5.0
- opencv >= 4.9.0
- Python packages:
- clang==14.0.1
- wheel
- setuptools
- sphinx_rtd_theme
- breathe
- future
- flake8
- sphinx==4.5.0
Please see also Dockerfiles.
git lfs clone https://github.com/NVIDIA/nvImageCodec.git
cd nvimagecodec
git submodule update --init --recursive --depth 1
mkdir build
cd build
export CUDACXX=nvcc
cmake .. -DCMAKE_BUILD_TYPE=Release
make
To build CV-CUDA samples, additionally CV-CUDA has to be installed and CVCUDA_DIR and NVCV_TYPES_DIR need to point folders with *-config.cmake files. Apart of that, BUILD_CVCUDA_SAMPLES variable must be set to ON.
Open Developer Command Prompt for VS 2022
git lfs clone https://github.com/NVIDIA/nvImageCodec.git
cd nvimagecodec
git submodule update --init --recursive --depth 1
.\externa\build_deps.bat
.\docker\build_helper.bat .\build 12
After succesfully built project, execute below commands.
cd build
cmake --build . --target wheel
From a successfully built project, installers can be generated using cpack:
cd build
cpack --config CPackConfig.cmake -DCMAKE_BUILD_TYPE=Release
This will generate in build directory *.zip or *tar.xz files
tar -xvf nvimgcodec-0.4.1.0-cuda12-x86_64-linux-lib.tar.gz -C /opt/nvidia/
sudo apt-get install -y ./nvimgcodec-0.4.1.0-cuda12-x86_64-linux-lib.deb
pip install nvidia_nvimgcodec_cu12-0.4.1-py3-none-manylinux2014_x86_64.whl
cd build
cmake --install . --config Release --prefix /opt/nvidia/nvimgcodec_<major_cuda_ver>
After execution there should be:
- all extension modules in /opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/extensions (it is default directory for extension discovery)
- libnvimgcodec.so in /opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/lib64
Add directory with libnvimgcodec.so to LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/lib64:$LD_LIBRARY_PATH
Open Developer Command Prompt for VS 2022
cd build
cmake --install . --config Release --prefix "c:\Program Files\nvimgcodec_cuda<major_cuda_ver>"
After execution there should be:
- all extension modules in c:\Program Files\nvimgcodec_cuda<major_cuda_ver>/extensions (it is default directory for extension discovery)
- nvimgcodec_0.dll in c:\Program Files\nvimgcodec_cuda<major_cuda_ver>\bin
Add directory with nvimgcodec_0.dll to PATH
Run CTest to execute L0 and L1 tests
cd build
cmake --install . --config Release --prefix bin
ctest -C Release
Run sample transcoder app tests
cd build
cmake --install . --config Release --prefix bin
cd bin/test
LD_LIBRARY_PATH=$PWD/../lib64 pytest -v test_transcode.py
Run Python API tests
First install python wheel. You would also need to have installed all Python tests dependencies (see Dockerfiles).
pip install nvidia_nvimgcodec_cu12-0.4.1.x-py3-none-manylinux2014_x86_64.whl
Run tests
cd tests
pytest -v ./python
To use nvimagecodec as a dependency in your CMake project, use:
list(APPEND CMAKE_PREFIX_PATH "/opt/nvidia/nvimgcodec_cuda<major_cuda_ver>/") # or the prefix where the package was installed if custom
find_package(nvimgcodec CONFIG REQUIRED)
# Mostly for showing some of the variables defined
message(STATUS "nvimgcodec_FOUND=${nvimgcodec_FOUND}")
message(STATUS "nvimgcodec_INCLUDE_DIR=${nvimgcodec_INCLUDE_DIR}")
message(STATUS "nvimgcodec_LIB_DIR=${nvimgcodec_LIB_DIR}")
message(STATUS "nvimgcodec_BIN_DIR=${nvimgcodec_BIN_DIR}")
message(STATUS "nvimgcodec_LIB=${nvimgcodec_LIB}")
message(STATUS "nvimgcodec_EXTENSIONS_DIR=${nvimgcodec_EXTENSIONS_DIR}")
message(STATUS "nvimgcodec_VERSION=${nvimgcodec_VERSION}")
target_include_directories(<your-target> PUBLIC ${nvimgcodec_INCLUDE_DIR})
target_link_directories(<your-target> PUBLIC ${nvimgcodec_LIB_DIR})
target_link_libraries(<your-target> PUBLIC ${nvimgcodec_LIB})