Skip to content

Conversation

DylanChen-NV
Copy link
Collaborator

@DylanChen-NV DylanChen-NV commented Oct 10, 2025

Summary by CodeRabbit

  • New Features
    • Added a GPU-accelerated scaled matrix multiplication operator in the PyTorch integration, supporting optional bias and configurable output data type.
    • Automatically infers output shape from input tensors and supports an option compatible with user-buffer workflows.
    • Introduced alongside the existing implementation without altering current behavior, ensuring seamless compatibility for existing users.

Description

Add torch compile support for cuda core GEMM OP.

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@DylanChen-NV DylanChen-NV requested a review from a team as a code owner October 10, 2025 08:38
@DylanChen-NV DylanChen-NV requested a review from hyukn October 10, 2025 08:38
Signed-off-by: Dylan Chen <[email protected]>
@DylanChen-NV DylanChen-NV force-pushed the fix_torch_compile_cudacoregemm branch from 0d27741 to dbc7b14 Compare October 10, 2025 08:39
Copy link
Contributor

coderabbitai bot commented Oct 10, 2025

📝 Walkthrough

Walkthrough

Adds a new Torch fake-op registration trtllm::cuda_scaled_mm in tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py. It defines a function mirroring cublas_scaled_mm with optional bias and out_dtype, plus userbuffers_id. The implementation infers output shape from inputs, allocates the output tensor with optional dtype, and returns it. Existing cublas op unchanged.

Changes

Cohort / File(s) Summary
Torch custom ops registration
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
Introduces new fake-op trtllm::cuda_scaled_mm with signature (mat_a, mat_b, scale_a, scale_b, bias=None, out_dtype=None, userbuffers_id=False). Computes output shape from mat_a and mat_b, allocates output (respecting out_dtype if provided), and returns it. Leaves trtllm::cublas_scaled_mm unchanged.

Sequence Diagram(s)

sequenceDiagram
    autonumber
    actor U as Caller
    participant T as PyTorch Dispatcher
    participant O as trtllm::cuda_scaled_mm (fake-op)

    U->>T: call trtllm::cuda_scaled_mm(mat_a, mat_b, scale_a, scale_b, [bias], [out_dtype], [userbuffers_id])
    T->>O: dispatch to fake-op
    Note over O: Infer output shape from mat_a x mat_b<br/>Select dtype (out_dtype or inferred)
    O-->>T: return allocated output tensor
    T-->>U: output tensor
Loading
sequenceDiagram
    autonumber
    actor U as Caller
    participant T as PyTorch Dispatcher
    participant C as trtllm::cublas_scaled_mm (existing)
    participant N as trtllm::cuda_scaled_mm (new)

    alt Use cuBLAS path
        U->>T: trtllm::cublas_scaled_mm(...)
        T->>C: dispatch
        C-->>U: output tensor
    else Use CUDA path
        U->>T: trtllm::cuda_scaled_mm(...)
        T->>N: dispatch
        N-->>U: output tensor
    end
Loading

Estimated code review effort

🎯 2 (Simple) | ⏱️ ~10 minutes

Pre-merge checks and finishing touches

❌ Failed checks (2 warnings)
Check name Status Explanation Resolution
Description Check ⚠️ Warning The pull request description retains template comments and provides only a one-line summary without explaining the issue or solution, and the Test Coverage section is empty. Please remove the residual template comments, expand the Description section to explain the problem and its solution in detail, and populate the Test Coverage section with relevant test cases to demonstrate the changes are validated.
Docstring Coverage ⚠️ Warning Docstring coverage is 0.00% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
✅ Passed checks (1 passed)
Check name Status Explanation
Title Check ✅ Passed The title concisely reflects the primary change of adding torch compile support for CUDA core GEMM operations and follows the repository’s template format with a valid ticket placeholder and the feature type, making it clear to a teammate scanning the history that the pull request implements support for a new CUDA scaled GEMM fake-op.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

coderabbitai bot commented Oct 10, 2025

📝 Walkthrough

Walkthrough

Adds a new fake Torch operator registration trtllm::cuda_scaled_mm in _register_fake, mirroring trtllm::cublas_scaled_mm. It defines shape/dtype inference: output shape copies mat_a with last dim set to mat_b.shape[-1], and returns a new tensor of dtype out_dtype. No other files changed.

Changes

Cohort / File(s) Summary
Fake op registration
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
Introduced fake op trtllm::cuda_scaled_mm in _register_fake with signature (mat_a, mat_b, scale_a, scale_b, bias, out_dtype, userbuffers_id=False) and meta-tensor shape/dtype inference matching cublas_scaled_mm. Existing trtllm::cublas_scaled_mm unchanged.

Estimated code review effort

🎯 2 (Simple) | ⏱️ ~8 minutes

Pre-merge checks and finishing touches

❌ Failed checks (2 warnings)
Check name Status Explanation Resolution
Description Check ⚠️ Warning The PR description includes a Description section but leaves the Test Coverage section empty and retains placeholder template instructions, failing to list the specific tests needed to validate the new functionality and making the description incomplete. Please populate the Test Coverage section with specific tests covering the new CUDA GEMM operator, remove any leftover template instructions or comments from the PR body, and ensure all required template sections are completed with appropriate details before merging.
Docstring Coverage ⚠️ Warning Docstring coverage is 0.00% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
✅ Passed checks (1 passed)
Check name Status Explanation
Title Check ✅ Passed The title follows the repository’s naming convention and clearly summarizes adding torch.compile support for a CUDA GEMM operator, which aligns with the main change in this pull request. It is concise, specific, and uses the required [None][feat] prefix in a single sentence.
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

🧹 Nitpick comments (1)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1)

124-137: Approve fake operator registration for trtllm::cuda_scaled_mm—shape/dtype inference is correct and C++ registration in cudaScaledMM.cpp matches the schema. Optional: extract the shared fake implementation to eliminate duplication.

📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between b555f1f and dbc7b14.

📒 Files selected for processing (1)
  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1 hunks)
🧰 Additional context used
📓 Path-based instructions (3)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use only spaces, no tabs; indent with 4 spaces.

Files:

  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.

Files:

  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).

Files:

  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
🧬 Code graph analysis (1)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1)
tensorrt_llm/_torch/custom_ops/torch_custom_ops.py (9)
  • _ (249-302)
  • _ (378-386)
  • _ (464-474)
  • _ (643-670)
  • _ (703-713)
  • _ (787-797)
  • _ (887-903)
  • _ (984-992)
  • _ (1025-1036)
🪛 Ruff (0.13.3)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py

128-128: Unused function argument: scale_a

(ARG001)


129-129: Unused function argument: scale_b

(ARG001)


130-130: Unused function argument: bias

(ARG001)


132-132: Unused function argument: userbuffers_id

(ARG001)

⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check

@DylanChen-NV
Copy link
Collaborator Author

/bot run

@tensorrt-cicd
Copy link
Collaborator

PR_Github #21011 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #21011 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #15886 completed with status: 'SUCCESS'
Pipeline passed with automatic retried tests. Check the rerun report for details.

Signed-off-by: Dylan Chen <[email protected]>
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

🧹 Nitpick comments (1)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1)

109-122: Consider adding type annotations for consistency.

For consistency with the newly added cuda_scaled_mm, consider adding proper type annotations to cublas_scaled_mm:

 @torch.library.register_fake("trtllm::cublas_scaled_mm")
 def _(
     mat_a: torch.Tensor,
     mat_b: torch.Tensor,
     scale_a: torch.Tensor,
     scale_b: torch.Tensor,
-    bias,
-    out_dtype,
-    userbuffers_id=False,
+    bias: Optional[torch.Tensor] = None,
+    out_dtype: Optional[torch.dtype] = None,
+    userbuffers_id: bool = False,
 ):
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between b555f1f and 7d62573.

📒 Files selected for processing (1)
  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1 hunks)
🧰 Additional context used
📓 Path-based instructions (3)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use only spaces, no tabs; indent with 4 spaces.

Files:

  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.

Files:

  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).

Files:

  • tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py
🧬 Code graph analysis (1)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1)
tensorrt_llm/_torch/custom_ops/torch_custom_ops.py (9)
  • _ (249-302)
  • _ (378-386)
  • _ (464-474)
  • _ (643-670)
  • _ (703-713)
  • _ (787-797)
  • _ (887-903)
  • _ (984-992)
  • _ (1025-1036)
🪛 Ruff (0.13.3)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py

128-128: Unused function argument: scale_a

(ARG001)


129-129: Unused function argument: scale_b

(ARG001)


130-130: Unused function argument: bias

(ARG001)


132-132: Unused function argument: userbuffers_id

(ARG001)

⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (1)
tensorrt_llm/_torch/custom_ops/cpp_custom_ops.py (1)

124-137: LGTM! Proper type annotations added.

The new fake op registration for cuda_scaled_mm correctly implements the output shape inference with proper type annotations for all parameters. This addresses the past review feedback about completing type annotations for bias and out_dtype.

The static analysis warnings about unused parameters are false positives—fake op registrations only need to compute output shapes for torch.compile tracing, not perform actual computations.

@DylanChen-NV
Copy link
Collaborator Author

/bot reuse-pipeline

@tensorrt-cicd
Copy link
Collaborator

PR_Github #21137 [ reuse-pipeline ] triggered by Bot

@DylanChen-NV DylanChen-NV enabled auto-merge (squash) October 13, 2025 03:31
@tensorrt-cicd
Copy link
Collaborator

PR_Github #21137 [ reuse-pipeline ] completed with state SUCCESS
Reusing PR_Github #21011 for commit 7d62573

@DylanChen-NV DylanChen-NV merged commit d6e315e into NVIDIA:main Oct 13, 2025
7 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants