-
Notifications
You must be signed in to change notification settings - Fork 2.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'zijiey/moe_interface_tests' into 'main'
Add MoE interface tests and move other tests to internal See merge request ADLR/megatron-lm!2088
- Loading branch information
Showing
4 changed files
with
89 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. | ||
|
||
import pytest | ||
import torch | ||
|
||
from megatron.core.models.gpt.gpt_layer_specs import ( | ||
get_gpt_layer_local_spec, | ||
get_gpt_layer_with_transformer_engine_spec, | ||
) | ||
from megatron.core.transformer.moe.moe_layer import MoELayer | ||
from megatron.core.transformer.moe.router import Router | ||
from megatron.core.transformer.transformer_config import TransformerConfig | ||
from megatron.training.initialize import _set_random_seed | ||
from tests.unit_tests.test_utilities import Utils | ||
|
||
|
||
class TestMoELayerInit: | ||
def setup_method(self, method): | ||
pass | ||
|
||
@pytest.mark.parametrize("moe_token_dispatcher_type", ["allgather", "alltoall"]) | ||
@pytest.mark.parametrize("num_moe_experts", [1, 2]) | ||
@pytest.mark.parametrize("grouped_gemm", [True, False]) | ||
def test_te_moe_layer(self, num_moe_experts, moe_token_dispatcher_type, grouped_gemm): | ||
Utils.initialize_model_parallel(1, 1) | ||
_set_random_seed(seed_=123, data_parallel_random_init=False) | ||
self.transformer_config = TransformerConfig( | ||
num_layers=1, | ||
hidden_size=12, | ||
num_attention_heads=4, | ||
num_moe_experts=num_moe_experts, | ||
use_cpu_initialization=True, | ||
moe_token_dispatcher_type=moe_token_dispatcher_type, | ||
moe_router_topk=2, | ||
moe_aux_loss_coeff=0.01, | ||
moe_grouped_gemm=grouped_gemm, | ||
add_bias_linear=False, | ||
) | ||
transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec( | ||
num_experts=num_moe_experts, moe_grouped_gemm=grouped_gemm | ||
) | ||
moe_layer = MoELayer( | ||
self.transformer_config, transformer_layer_spec.submodules.mlp.submodules | ||
) | ||
Utils.destroy_model_parallel() | ||
|
||
@pytest.mark.parametrize("moe_token_dispatcher_type", ["allgather", "alltoall"]) | ||
@pytest.mark.parametrize("num_moe_experts", [1, 2]) | ||
def test_legacy_moe_layer(self, num_moe_experts, moe_token_dispatcher_type): | ||
Utils.initialize_model_parallel(1, 1) | ||
_set_random_seed(seed_=123, data_parallel_random_init=False) | ||
num_moe_experts = 4 | ||
self.transformer_config = TransformerConfig( | ||
num_layers=1, | ||
hidden_size=12, | ||
num_attention_heads=4, | ||
num_moe_experts=num_moe_experts, | ||
use_cpu_initialization=True, | ||
moe_router_load_balancing_type="aux_loss", | ||
moe_router_topk=2, | ||
moe_aux_loss_coeff=0.01, | ||
add_bias_linear=False, | ||
) | ||
transformer_layer_spec = get_gpt_layer_local_spec( | ||
num_experts=num_moe_experts, moe_grouped_gemm=False | ||
) | ||
moe_layer = MoELayer( | ||
self.transformer_config, transformer_layer_spec.submodules.mlp.submodules | ||
) | ||
Utils.destroy_model_parallel() | ||
|
||
def teardown_method(self, method): | ||
Utils.destroy_model_parallel() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters