- Do you have these kinds of trouble? When the exam is coming, but still can not concentrate on your studies? Wasting your time on looking at your phone?
- We hope by develope「一天一番茄,考試100分」to supervise the status of studies and improve efficiency (reduce interference and distraction).
-
「一天一番茄,考試100分」monitors whether the user is using the mobile phone by identifying the mobile phone, and if so, system will alarm the user.
-
The system will detect gesture or motion than respond accordingly.
- At system start, the user can select one of three timekeeping modes. Use gestures 1, 2 or 3 to select.
- If user leave the camera (camera cannot detect the user), a warning message will appear.
- If the sysytem detects the gesture of 『ok』, it will play relax music.
- If you want to stop the music by detects the gesture of 『5』.
- If the sysytem detects the gesture of 『2』, it will take a foto.
-
When the system ends, it will send a mail to the mailbox showing the usage status
-
tab
q
to ending the function
- Software:
raspberry pi OS- Unbutu
- Hardware:
序號 | 設備名稱 | 數量 | 來源 |
---|---|---|---|
1 | 1 | MOLi | |
2 | 1 | MOLi | |
3 | 1 | 助教 | |
4 | 1 | ||
5 | 1 | ||
6 | Laptop | 1 |
-
將 SD 卡格式化,與 raspberry pi 連接 -
架設 Raspberry pi + pi camera + 揚聲器 模組 -
建構環境:
- Problem:
- 一開始希望使用 Tensorflow 訓練偵測手機模型,但後來因能力不足,加上有找到可以替代的模組,改而使用模組
- 如果使用 pi camera 的話樹莓派只能使用 32 bits
- 一開始我們原本安裝 conda 以便快速安裝 opencv (只需 20 分鐘),但後來發現環境無法通用且我們需要的模組(dnn.detection model)只有 4.1 以上的 opencv 才可以支援,但 conda 中的 opencv 只有 3.6.7
- 嘗試升級 conda 中的 opencv 版本但以失敗告終。
- 官方下載 mediapipe 的封包無法支援 32 bits,後來經由非官方資源才成功裝載支援 32 bits 的 mediapipe
- 將SD卡格式化,重新下載環境,直接載完整的 opencv,但途中也遇到問題:樹莓派耗損跑不動(措施:換新的樹莓派),且最終也仍然無法成功安裝。
- 嘗試依照學長建議直接安裝 cv2,有安裝成功但發現裡面沒有我們所需的模組,因此也失敗。
- 樹莓派
下載 mediapipe:請參考以下網址因為我們需要使用pi camera,所以只能將raspberry pi 使用 32 bit,但目前大多數 mediapipe 都只能支援 64 bit,後來找到以下網頁內的資訊,才有辦法安裝 mediapipe。- 下載 mediapipe 網頁
下載 cv2:請參考以下網址
- 因在樹莓派上無法下載 opencv 因此無法將環境建構完成,所以改用虛擬機建構及執行,方法請參考下方步驟
-
Install Ubuntu:Please refer to the following website
-
Setting the environment:
- install cmake:
sudo apt install cmake
- install git:
sudo apt install git
- install pip:
sudo apt install pip
- install mediapipe: Please refer to the following website
git clone https://github.com/google/mediapipe.git
- reference : The website of install mediapipe
- install opencv:Please refer to the following website
- The website of install opencv
:::info
git clone https://github.com/opencv/opencv.git
git clone https://github.com/opencv/opencv_contrib.git
cd ~/opencv
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j3
# 看你開幾顆CPUsudo make install
git clone https://github.com/opencv/opencv_extra.git
:::
- The website of install opencv
:::info
- install pygame:
sudo apt install python-pygame
pip install pygame
pip install opencv-python
- install ubuntu package(for camera):
- check your camera
- install cmake:
- Clone the project on GitHub:
git clone https://github.com/wyping314/LSA_project.git
cd LSA_project
vim tomato.py
- Modify the path to store pictures:
save_path
- Modify the recipient
msg['To']
which indef mail()
- Modify two parameters
smtp.login()
which indef mail()
- Adjust the parameters of the lens
VideoCapture()
(total of three places) according to your equipment
- Modify the path to store pictures:
- execute program
python3 mainproject.py
- The system will pop up the camera window
- Read how to use & Choose mode
- Pomodoro Technique start
- System start detecting the user
- 選擇模式
start = False
if start == False:
if text == '1':
# test mode
working_time = 0.1
break_time = 0.1
start = True
a = tomato(working_time, 'Go working')
elif text == '2':
working_time = 10 # 10 minute
break_time = 5 # 5 minute
start = True
a = tomato(working_time, 'Go working')
elif text == 'ok':
working_time = 25 # 25 minute
break_time = 5 # 5 minute
start = True
a = tomato(working_time, 'Go working')
- 計算剩餘時間
def tomato(minutes):
start_time = time.perf_counter()
diff_seconds = int(round(time.perf_counter() - start_time))
left_seconds = minutes * 60 - diff_seconds
return left_seconds
- 在畫面上顯示讀書和休息的剩餘時間
a = a - 0.09
minute = str(int(a / 60)).zfill(2)
sec = str(int(a % 60)).zfill(2)
countdown = "remaining time = " + minute + ":" + sec
cv2.putText(frame, countdown, (10,110), fontFace, 1, (0, 0, 0), 3, lineType) # 印出文字
if int(minute) <= 0 and int(sec) <= 0:
count += 1
time.sleep(1)
# if count == 4:
# break
if count%2 != 0:
a = tomato(break_time, 'Take a break')
elif count%2 == 0:
a = tomato(working_time, 'Go working')
- 音效
pygame.mixer.init()
warning1 = pygame.mixer.Sound("phonealert.wav")
warning2= pygame.mixer.Sound("personalert.wav")
music= pygame.mixer.Sound("relax.wav")
shot= pygame.mixer.Sound("shot.wav")
- 根據角度判斷手勢
def hand(finger_angle,frame):
# 根據手指角度的串列內容,返回對應的手勢名稱
f1 = finger_angle[0] # 大拇指角度
f2 = finger_angle[1] # 食指角度
f3 = finger_angle[2] # 中指角度
f4 = finger_angle[3] # 無名指角度
f5 = finger_angle[4] # 小拇指角度
# 小於 50 表示手指伸直,大於等於 50 表示手指捲縮
if f1<50 and f2>=50 and f3>=50 and f4>=50 and f5>=50:
return 'START' #good
elif f1>=50 and f2>=50 and f3>=50 and f4>=50 and f5>=50:
return 'CLOSE' #0
elif f1>=50 and f2<50 and f3>=50 and f4>=50 and f5>=50:
return '1'
elif f1>=50 and f2<50 and f3<50 and f4>=50 and f5>=50:
shot.play()
cv2.imwrite(save_path + file_name + '.jpg',frame)
return '2'
elif f1>=50 and f2>=50 and f3<50 and f4<50 and f5<50:
music.play()
time.sleep(1)
return 'ok'
elif f1<50 and f2<50 and f3<50 and f4<50 and f5<50:
music.stop()
return 'STOP' #5
else:
return
- 在每一幀畫面中辨識手勢
results = hands.process(img2) # 偵測手勢
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
finger_points = [] # 記錄手指節點座標的串列
for i in hand_landmarks.landmark:
# 將 21 個節點換算成座標,記錄到 finger_points
x = i.x*w
y = i.y*h
finger_points.append((x,y))
if finger_points:
finger_angle = hand_angle(finger_points) # 計算手指角度,回傳長度為 5 的串列
text = hand(finger_angle,frame) # 取得手勢所回傳的內容
- 匯入模型/設定參數
classNames= []
classFile = r'Object-Detector-main/coco.names'
with open(classFile,'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
configPath = r'Object-Detector-main/ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = r'Object-Detector-main/frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightsPath,configPath)
print(net)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
- 辨識每一幀畫面中是否有手機和人臉
classIds, confs, bbox = net.detect(frame,confThreshold=thres)
#偵測到手機
if 77 in classIds:
cv2.putText(frame, "Warning!!",(30,400), fontFace, 5, (0,0,255), 10, lineType) # 印出文字
warning1.play()
time.sleep(1)
#偵測不到手機也偵測不到人
elif 1 not in classIds:
cv2.putText(frame, "NOT FOUND!!!",(180,400), fontFace, 5, (0, 0, 255), 8, cv2.FONT_HERSHEY_COMPLEX) # 印出文字
warning2.play()
time.sleep(2.5)
warning2.stop()
#偵測到手機後匡選
if len(classIds) != 0:
for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox):
if classId == 77:
cv2.rectangle(frame,box,color=(0,0,255),thickness=2)
cv2.putText(frame,classNames[classId-1].upper(),(box[0]+10,box[1]+30),
cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2)
def mail(count, working_time, break_time):
today = datetime.date.today()
content = 'working time = ' + str(working_time) + ' minutes' + '<br>'
content += 'break_time = ' + str(break_time) + ' minutes' + '<br>'
content += '完成:' + str(count) + '個循環'
msg = MIMEMultipart() # 使用多種格式所組成的內容
msg.attach(MIMEText(content, 'html', 'utf-8')) # 加入 HTML 內容
# 使用 python 內建的 open 方法開啟指定目錄下的檔案
with open('photo_0.jpg', 'rb') as file:
img = file.read()
attach_file = MIMEApplication(img, Name = 'photo_0.jpg') # 設定附加檔案圖片
msg.attach(attach_file) # 加入附加檔案圖片
msg['Subject'] = "%s 番茄鐘使用時間" % today
msg['From'] = "tomato"
msg['To'] = '[email protected]'
# smtp = smtplib.SMTP('smtp.gmail.com', 587)
smtp = smtplib.SMTP('smtp.gmail.com', 25)
smtp.ehlo()
smtp.starttls()
# smtp.login() 的第二個參數 : 開啟應用程式密碼
# https://support.google.com/accounts/answer/185833
smtp.login('[email protected]', '金鑰')
status = smtp.send_message(msg)
print(status)
smtp.quit()
- 王詠平:program(detect gestures, detect person, Pomodoro)、program integration
- 李亞軒:program(detect cell phone, other funtions)、program development
- 林千榆:setting environment、program(Sent back mail)、program development
- 張可葭:setting environment、raspi research、github content、ppt、Demo veido
- 黃郁庭:setting environment、program(detect cell phone, other funtions)、program development、Thoughts on the topic、raspi research
- 感謝在MOLi學長姐的無私幫忙
- 感謝提供設備的柏瑋助教及MOLi
- https://www.techbang.com/posts/98379-little-brother-self-created-ai-anti-procrastination-system-as?fbclid=IwAR2PgQqElHSfI_3qW6eX_MqQHOO5SmE8TiVfZ5AM1osQ4MiB0iV8enTHW9M
- https://github.com/sjf0213/rpi/tree/master/opencv-gesture
- https://github.com/ayushpai/Object-Detector
- https://blog.cavedu.com/2020/11/11/microsoft-lobe-ai/
- https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/2
- https://stackoverflow.com/questions/55028280/no-module-named-picamera
- https://caffeinedev.medium.com/how-to-install-tensorflow-on-m1-mac-8e9b91d93706
- https://realpython.com/face-recognition-with-python/
- https://gogoprivateryan.blogspot.com/2015/09/opencv-3-opencv-python-face-recognition.html
- https://blog.csdn.net/lovelyaiq/article/details/26501983
- https://hackmd.io/@TienYi/HJf4gGnrF
- https://www.jeremymorgan.com/tutorials/raspberry-pi/how-to-install-opencv-raspberry-pi/
- https://www.youtube.com/watch?v=QzVYnG-WaM4
- https://www.circuspi.com/index.php/2022/07/29/ai-mediapipe-hand/