Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[fix] Deduplicate labels and recover from malformed bboxes #75

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 42 additions & 7 deletions yolo/tools/data_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
VerticalFlip,
)
from yolo.tools.dataset_preparation import prepare_dataset
from yolo.utils.bounding_box_utils import calculate_iou
from yolo.utils.dataset_utils import (
create_image_metadata,
locate_label_paths,
Expand Down Expand Up @@ -105,12 +106,42 @@ def filter_data(self, dataset_path: Path, phase_name: str) -> list:

labels = self.load_valid_labels(image_id, image_seg_annotations)

if labels is not None and len(labels) > 1:
labels = self.deduplicate_labels(labels)

img_path = images_path / image_name
data.append((img_path, labels))
valid_inputs += 1
logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
return data

def deduplicate_labels(self, labels: Tensor) -> Tensor:
"""
Removes duplicate labels from a Tensor of bboxes.

Parameters:
labels (Tensor): A tensor of all input bounding boxes.

Returns:
Tensor: A tensor of all remaining bounding boxes.
"""
dedup_labels = []

for l in labels:
acceptable = True
for ddl in dedup_labels:
if int(l[0]) != int(ddl[0]):
continue

if float(calculate_iou(l[1:], ddl[1:])) > .99:
acceptable = False
break

if acceptable:
dedup_labels.append(l)

return torch.stack(dedup_labels)

def load_valid_labels(self, label_path: str, seg_data_one_img: list) -> Union[Tensor, None]:
"""
Loads and validates bounding box data is [0, 1] from a label file.
Expand All @@ -122,13 +153,17 @@ def load_valid_labels(self, label_path: str, seg_data_one_img: list) -> Union[Te
Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
"""
bboxes = []
for seg_data in seg_data_one_img:
cls = seg_data[0]
points = np.array(seg_data[1:]).reshape(-1, 2)
valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
if valid_points.size > 1:
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
bboxes.append(bbox)
try:
for seg_data in seg_data_one_img:
cls = seg_data[0]
points = np.array(seg_data[1:]).reshape(-1, 2)
valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
if valid_points.size > 1:
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
bboxes.append(bbox)
except ValueError:
logger.warning("Invalid BBox in {}", label_path)
return torch.zeros((0, 5))

if bboxes:
return torch.stack(bboxes)
Expand Down