Skip to content

Latest commit

 

History

History
131 lines (103 loc) · 18.7 KB

README.md

File metadata and controls

131 lines (103 loc) · 18.7 KB

TSM

Introduction

[ALGORITHM]

@inproceedings{lin2019tsm,
  title={TSM: Temporal Shift Module for Efficient Video Understanding},
  author={Lin, Ji and Gan, Chuang and Han, Song},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

[BACKBONE]

@article{NonLocal2018,
  author =   {Xiaolong Wang and Ross Girshick and Abhinav Gupta and Kaiming He},
  title =    {Non-local Neural Networks},
  journal =  {CVPR},
  year =     {2018}
}

Model Zoo

Kinetics-400

config resolution gpus backbone pretrain top1 acc top5 acc reference top1 acc reference top5 acc inference_time(video/s) gpu_mem(M) ckpt log json
tsm_r50_1x1x8_50e_kinetics400_rgb 340x256 8 ResNet50 ImageNet 70.24 89.56 70.36 89.49 74.0 (8x1 frames) 7079 ckpt log json
tsm_r50_1x1x8_50e_kinetics400_rgb short-side 256 8 ResNet50 ImageNet 70.59 89.52 x x x 7079 ckpt log json
tsm_r50_gpu_normalize_1x1x8_50e_kinetics400_rgb.py short-side 256 8 ResNet50 ImageNet 70.48 89.40 x x x 7076 ckpt log json
tsm_r50_video_1x1x8_50e_kinetics400_rgb short-side 256 8 ResNet50 ImageNet 70.25 89.66 70.36 89.49 74.0 (8x1 frames) 7077 ckpt log json
tsm_r50_dense_1x1x8_100e_kinetics400_rgb 340x256 8x4 ResNet50 ImageNet 72.9 90.44 72.22 90.37 11.5 (8x10 frames) 7079 ckpt log json
tsm_r50_dense_1x1x8_100e_kinetics400_rgb short-side 256 8 ResNet50 ImageNet 73.38 91.02 x x x 7079 ckpt log json
tsm_r50_1x1x16_50e_kinetics400_rgb 340x256 8 ResNet50 ImageNet 72.09 90.37 70.67 89.98 47.0 (16x1 frames) 10404 ckpt log json
tsm_r50_1x1x16_50e_kinetics400_rgb short-side 256 8x4 ResNet50 ImageNet 71.89 90.73 x x x 10398 ckpt log json
tsm_nl_embedded_gaussian_r50_1x1x8_50e_kinetics400_rgb short-side 320 8x4 ResNet50 ImageNet 72.03 90.25 71.81 90.36 x 8931 ckpt log json
tsm_nl_gaussian_r50_1x1x8_50e_kinetics400_rgb short-side 320 8x4 ResNet50 ImageNet 70.70 89.90 x x x 10125 ckpt log json
tsm_nl_dot_product_r50_1x1x8_50e_kinetics400_rgb short-side 320 8x4 ResNet50 ImageNet 71.60 90.34 x x x 8358 ckpt log json
tsm_mobilenetv2_dense_1x1x8_100e_kinetics400_rgb short-side 320 8 MobileNetV2 ImageNet 68.46 88.64 x x x 3385 ckpt log json

Something-Something V1

config resolution gpus backbone pretrain top1 acc (efficient/accurate) top5 acc (efficient/accurate) reference top1 acc (efficient/accurate) reference top5 acc (efficient/accurate) gpu_mem(M) ckpt log json
tsm_r50_1x1x8_50e_sthv1_rgb height 100 8 ResNet50 ImageNet 45.58 / 47.70 75.02 / 76.12 45.50 / 47.33 74.34 / 76.60 7077 ckpt log json
tsm_r50_flip_1x1x8_50e_sthv1_rgb height 100 8 ResNet50 ImageNet 47.10 / 48.51 76.02 / 77.56 45.50 / 47.33 74.34 / 76.60 7077 ckpt log json
tsm_r50_1x1x16_50e_sthv1_rgb height 100 8 ResNet50 ImageNet 47.62 / 49.28 76.63 / 77.82 47.05 / 48.61 76.40 / 77.96 10390 ckpt log json
tsm_r101_1x1x8_50e_sthv1_rgb height 100 8 ResNet50 ImageNet 45.72 / 48.43 74.67 / 76.72 46.64 / 48.13 75.40 / 77.31 9800 ckpt log json

Something-Something V2

config resolution gpus backbone pretrain top1 acc (efficient/accurate) top5 acc (efficient/accurate) reference top1 acc (efficient/accurate) reference top5 acc (efficient/accurate) gpu_mem(M) ckpt log json
tsm_r50_1x1x8_50e_sthv2_rgb height 240 8 ResNet50 ImageNet 57.86 / 61.12 84.67 / 86.26 57.98 / 60.69 84.57 / 86.28 7069 ckpt log json
tsm_r50_1x1x16_50e_sthv2_rgb height 240 8 ResNet50 ImageNet 59.93 / 62.04 86.10 / 87.35 58.90 / 60.98 85.29 / 86.60 10400 ckpt log json
tsm_r101_1x1x8_50e_sthv2_rgb height 240 8 ResNet101 ImageNet 58.59 / 61.51 85.07 / 86.90 58.89 / 61.36 85.14 / 87.00 9784 ckpt log json

Notes:

  1. The gpus indicates the number of gpu we used to get the checkpoint. It is noteworthy that the configs we provide are used for 8 gpus as default. According to the Linear Scaling Rule, you may set the learning rate proportional to the batch size if you use different GPUs or videos per GPU, e.g., lr=0.01 for 4 GPUs x 2 video/gpu and lr=0.08 for 16 GPUs x 4 video/gpu.
  2. The inference_time is got by this benchmark script, where we use the sampling frames strategy of the test setting and only care about the model inference time, not including the IO time and pre-processing time. For each setting, we use 1 gpu and set batch size (videos per gpu) to 1 to calculate the inference time.
  3. The values in columns named after "reference" are the results got by training on the original repo, using the same model settings. The checkpoints for reference repo can be downloaded here.
  4. There are two kinds of test settings for Something-Something dataset, efficient setting (center crop x 1 clip) and accurate setting (Three crop x 2 clip), which is referred from the original repo. We use efficient setting as default provided in config files, and it can be changed to accurate setting by
...
test_pipeline = [
    dict(
        type='SampleFrames',
        clip_len=1,
        frame_interval=1,
        num_clips=16,   # `num_clips = 8` when using 8 segments
        twice_sample=True,    # set `twice_sample=True` for twice sample in accurate setting
        test_mode=True),
    dict(type='RawFrameDecode'),
    dict(type='Resize', scale=(-1, 256)),
    # dict(type='CenterCrop', crop_size=224), it is used for efficient setting
    dict(type='ThreeCrop', crop_size=256),  # it is used for accurate setting
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCHW'),
    dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]),
    dict(type='ToTensor', keys=['imgs'])
]

For more details on data preparation, you can refer to Kinetics400, Something-Something V1 and Something-Something V2 in Data Preparation.

Train

You can use the following command to train a model.

python tools/train.py ${CONFIG_FILE} [optional arguments]

Example: train TSM model on Kinetics-400 dataset in a deterministic option with periodic validation.

python tools/train.py configs/recognition/tsm/tsm_r50_1x1x8_50e_kinetics400_rgb.py \
    --work-dir work_dirs/tsm_r50_1x1x8_100e_kinetics400_rgb \
    --validate --seed 0 --deterministic

For more details, you can refer to Training setting part in getting_started.

Test

You can use the following command to test a model.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [optional arguments]

Example: test TSM model on Kinetics-400 dataset and dump the result to a json file.

python tools/test.py configs/recognition/tsm/tsm_r50_1x1x8_50e_kinetics400_rgb.py \
    checkpoints/SOME_CHECKPOINT.pth --eval top_k_accuracy mean_class_accuracy \
    --out result.json

For more details, you can refer to Test a dataset part in getting_started.