forked from open-mmlab/mmaction2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
92 lines (72 loc) · 2.58 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import argparse
import time
import torch
from mmcv import Config
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel
from mmcv.runner.fp16_utils import wrap_fp16_model
from mmaction.datasets import build_dataloader, build_dataset
from mmaction.models import build_model
def parse_args():
parser = argparse.ArgumentParser(
description='MMAction2 benchmark a recognizer')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'--log-interval', default=10, help='interval of logging')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.backbone.pretrained = None
cfg.data.test.test_mode = True
# build the dataloader
dataset = build_dataset(cfg.data.test, dict(test_mode=True))
data_loader = build_dataloader(
dataset,
videos_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=False,
shuffle=False)
# build the model and load checkpoint
model = build_model(
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
model = MMDataParallel(model, device_ids=[0])
model.eval()
# the first several iterations may be very slow so skip them
num_warmup = 5
pure_inf_time = 0
# benchmark with 2000 video and take the average
for i, data in enumerate(data_loader):
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
model(return_loss=False, **data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % args.log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print(
f'Done video [{i + 1:<3}/ 2000], fps: {fps:.1f} video / s')
if (i + 1) == 200:
pure_inf_time += elapsed
fps = (i + 1 - num_warmup) / pure_inf_time
print(f'Overall fps: {fps:.1f} video / s')
break
if __name__ == '__main__':
main()