Blur Detection of Digital Images using Haar Wavelet Transform. This is the implementation of this paper
Make sure python3 and pip is installed. Then, install cv2 and PyWavelets.
# install opencv-python
pip install cv2
# install PyWavelets
pip install PyWavelets
To run the python script with the sample images uploaded to this repo.
python blur_wavelet.py -i images/blur
The output will be
images/blur/Original_391.jpg, Per: 0.00011, blur extent: 41.142, is blur: True
images/blur/Original_426.jpg, Per: 0.00000, blur extent: 81.158, is blur: True
images/blur/Original_292.jpg, Per: 0.00000, blur extent: 50.951, is blur: True
images/blur/Original_244.jpg, Per: 0.00000, blur extent: 299.500, is blur: True
images/blur/Original_297.jpg, Per: 0.00282, blur extent: 10.708, is blur: False
images/blur/Original_254.jpg, Per: 0.00017, blur extent: 1445.000, is blur: True
images/blur/Original_6.jpg, Per: 0.00000, blur extent: 9.936, is blur: True
images/blur/Original_5.jpg, Per: 0.00032, blur extent: 12.265, is blur: True
images/blur/Original_359.jpg, Per: 0.00000, blur extent: 121.937, is blur: True
images/blur/Original_217.jpg, Per: 0.00016, blur extent: 28.323, is blur: True
The paper defines two parameters in order to configure the algorithm. The first is threshold. It is used to select if a pixel of Haar transform image is considered as Edge Point. Default value is 35. If you select a smaller threshold, it is more likely an image to be classified as blur.
The default threshold is 35. You can define it by adding the parameter in the bash call. In the following call to the script we select 25 as threshold.
python blur_wavelet.py -i images/noblur --threshold 25
The output will be
images/noblur/DSCN0593.JPG, Per: 0.00486, blur extent: 1.878, is blur: False
images/noblur/DSCN6481.JPG, Per: 0.00108, blur extent: 3.424, is blur: False
images/noblur/DSC02100.JPG, Per: 0.00181, blur extent: 0.974, is blur: False
images/noblur/DSC00700.JPG, Per: 0.00782, blur extent: 1.117, is blur: False
images/noblur/DSC05345.JPG, Per: 0.00424, blur extent: 0.741, is blur: False
images/noblur/DSC01910.JPG, Per: 0.00694, blur extent: 1.269, is blur: False
images/noblur/IMG_0066.JPG, Per: 0.00250, blur extent: 4.715, is blur: False
images/noblur/IMG_0487.JPG, Per: 0.01155, blur extent: 1.795, is blur: False
images/noblur/DSC05405.JPG, Per: 0.01503, blur extent: 0.645, is blur: False
images/noblur/DSCN0375.JPG, Per: 0.00356, blur extent: 2.422, is blur: False
In the paper is called MinZero. If Per is smaller than MinZero the image is classified as blur. The default value is 0.001 . In order to configure the MinZero threshold, run the script with the flag -d MIN_ZERO
python blur_wavelet.py -i images/noblur -d 0.005
The output will be
images/noblur/DSCN0593.JPG, Per: 0.00459, blur extent: 2.029, is blur: True
images/noblur/DSCN6481.JPG, Per: 0.00068, blur extent: 5.012, is blur: True
images/noblur/DSC02100.JPG, Per: 0.00135, blur extent: 1.786, is blur: True
images/noblur/DSC00700.JPG, Per: 0.00782, blur extent: 1.405, is blur: False
images/noblur/DSC05345.JPG, Per: 0.00343, blur extent: 0.929, is blur: True
images/noblur/DSC01910.JPG, Per: 0.00647, blur extent: 1.697, is blur: False
images/noblur/IMG_0066.JPG, Per: 0.00205, blur extent: 5.373, is blur: True
images/noblur/IMG_0487.JPG, Per: 0.01045, blur extent: 2.182, is blur: False
images/noblur/DSC05405.JPG, Per: 0.01310, blur extent: 0.775, is blur: False
images/noblur/DSCN0375.JPG, Per: 0.00296, blur extent: 2.865, is blur: True
The prediction fails in this case.
In order to save the output as .JSON, run the script with the flag -s SAVE_PATH.json . Example: save .json output in the project directory as output.json:
python blur_wavelet.py -i images/blur -s output.json
Checking the .json file:
[
{
"blur extent": 41.14235294117647,
"input_path": "images/blur/Original_391.jpg",
"is blur": true,
"per": 0.0001104911330865698
},
{
"blur extent": 81.15789473684211,
"input_path": "images/blur/Original_426.jpg",
"is blur": true,
"per": 0.0
}
]
The sample images have been taken from this blur image dataset
E. Mavridaki, V. Mezaris, "No-Reference blur assessment in natural images using Fourier transform and spatial pyramids", Proc. IEEE International Conference on Image Processing (ICIP 2014), Paris, France, October 2014.
The dataset consists of undistorted, naturally-blurred and artificially-blurred images for image quality assessment purposes. Download the dataset from here: http://mklab.iti.gr/files/imageblur/CERTH_ImageBlurDataset.zip
This algorithm is based on this paper
Tong, Hanghang & Li, Mingjing & Zhang, Hongjiang & Zhang, Changshui. (2004). Blur detection for digital images using wavelet transform. IEEE International Conference on Multimedia and EXPO. 1. 17 - 20 Vol.1. 10.1109/ICME.2004.1394114.
(c) 2019 Pedro Rodenas. MIT License