该仓库基于 shouxieai/tensorRT_Pro,并进行了调整以支持 YOLOv8 的各项任务。
- 目前已支持 YOLOv8、YOLOv8-Cls、YOLOv8-Seg、YOLOv8-OBB、YOLOv8-Pose、RT-DETR、ByteTrack、YOLOv9、YOLOv10、RTMO、PP-OCRv4、LaneATT、CLRNet、CLRerNet、YOLO11 高性能推理!!!🚀🚀🚀
- 基于 tensorRT8.x,C++ 高级接口,C++ 部署,服务器/嵌入式使用
- 🔥 YOLOv8推理详解及部署实现
- 🔥 YOLOv8-Cls推理详解及部署实现
- 🔥 YOLOv8-Seg推理详解及部署实现
- 🔥 YOLOv8-OBB推理详解及部署实现
- 🔥 YOLOv8-Pose推理详解及部署实现
- 🔥 RT-DETR推理详解及部署实现
- 🔥 YOLOv9推理详解及部署实现
- 🔥 YOLOv10推理详解及部署实现
- 🔥 MMPose-RTMO推理详解及部署实现(上)
- 🔥 MMPose-RTMO推理详解及部署实现(下)
- 🔥 LayerNorm Plugin的使用与说明
- 🔥 PaddleOCR-PP-OCRv4推理详解及部署实现(上)
- 🔥 PaddleOCR-PP-OCRv4推理详解及部署实现(中)
- 🔥 PaddleOCR-PP-OCRv4推理详解及部署实现(下)
- 🔥 LaneATT推理详解及部署实现(上)
- 🔥 LaneATT推理详解及部署实现(下)
- 🔥 CLRNet推理详解及部署实现(上)
- 🔥 CLRNet推理详解及部署实现(下)
- 🔥 CLRerNet推理详解及部署实现(上)
- 🔥 CLRerNet推理详解及部署实现(下)
- 🔥 YOLO11推理详解及部署实现
- 2024/10/20
- YOLO11 分类、检测、分割、姿态点估计任务支持
- 2024/8/18
- CLRerNet 支持
- 2024/8/11
- CLRNet 支持
- 2024/8/4
- LaneATT 支持
- 提供测试视频下载(Baidu Drive)
- 2024/7/24
- PP-OCRv4 支持
- cuOSD 支持,代码 copy 自 Lidar_AI_Solution/libraries/cuOSD
- 2024/7/7
- LayerNorm Plugin 支持,代码 copy 自 CUDA-BEVFusion/src/plugins/custom_layernorm.cu
- 提供 ONNX 模型下载(Baidu Drive),方便大家测试使用
- 2024/6/1
- RTMO 支持
- 2024/5/29
- 修改 YOLOv6 的 ONNX 导出以及推理
- 2024/5/26
- YOLOv10 支持
- 2024/3/5
- YOLOv9 支持
- 2024/2/1
- 新增 MinMaxCalibrator 校准器,可以通过
TRT::Calibrator::MinMax
指定 - 新增 mAP 测试使用的一些脚本文件,mAP 计算代码 copy 自 yolov6/core/evaler.py#L231
- 新增 MinMaxCalibrator 校准器,可以通过
- 2024/1/21
- YOLOv8-OBB 支持
- ByteTrack 支持,实现基本跟踪功能
- 2024/1/10
- 修复 IoU 计算 bug
- 2023/11/12
- RT-DETR 支持
- 2023/11/07
- 首次提交代码,YOLOv8 分类、检测、分割、姿态点估计任务支持
该项目依赖于 cuda、cudnn、tensorRT、opencv、protobuf 库,请在 CMakeLists.txt 或 Makefile 中手动指定路径配置
- 服务器
- CUDA >= 10.2
- cuDNN >= 8.x
- TensorRT >= 8.x
- protobuf == 3.11.4
- 软件安装请参考:Ubuntu20.04软件安装大全
- 嵌入式
- jetpack >= 4.6
- protobuf == 3.11.4
克隆该项目
git clone https://github.com/Melody-Zhou/tensorRT_Pro-YOLOv8.git
CMakeLists.txt 编译
- 修改库文件路径
# CMakeLists.txt 13 行, 修改 opencv 路径
set(OpenCV_DIR "/usr/local/include/opencv4/")
# CMakeLists.txt 15 行, 修改 cuda 路径
set(CUDA_TOOLKIT_ROOT_DIR "/usr/local/cuda-11.6")
# CMakeLists.txt 16 行, 修改 cudnn 路径
set(CUDNN_DIR "/usr/local/cudnn8.4.0.27-cuda11.6")
# CMakeLists.txt 17 行, 修改 tensorRT 路径
set(TENSORRT_DIR "/opt/TensorRT-8.4.1.5")
# CMakeLists.txt 20 行, 修改 protobuf 路径
set(PROTOBUF_DIR "/home/jarvis/protobuf")
- 编译
mkdir build
cd build
cmake ..
make -j64
Makefile 编译
- 修改库文件路径
# Makefile 4 行,修改 protobuf 路径
lean_protobuf := /home/jarvis/protobuf
# Makefile 5 行,修改 tensorRT 路径
lean_tensor_rt := /opt/TensorRT-8.4.1.5
# Makefile 6 行,修改 cudnn 路径
lean_cudnn := /usr/local/cudnn8.4.0.27-cuda11.6
# Makefile 7 行,修改 opencv 路径
lean_opencv := /usr/local
# Makefile 8 行,修改 cuda 路径
lean_cuda := /usr/local/cuda-11.6
- 编译
make -j64
YOLOv3支持
- 下载 YOLOv3
git clone https://github.com/ultralytics/yolov3.git
- 修改代码, 保证动态 batch
# ========== export.py ==========
# yolov3/export.py第160行
# output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output']
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1,25200,85)
- 导出 onnx 模型
cd yolov3
python export.py --weights=yolov3.pt --dynamic --simplify --include=onnx --opset=11
- 复制模型并执行
cp yolov3/yolov3.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
# 修改代码在 src/application/app_yolo.cpp: app_yolo 函数中, 使用 V3 的方式即可运行
# test(Yolo::Type::V3, TRT::Mode::FP32, "yolov3");
make yolo -j64
YOLOX支持
- 下载 YOLOX
git clone https://github.com/Megvii-BaseDetection/YOLOX.git
- 导出 onnx 模型
cd YOLOX
export PYTHONPATH=$PYTHONPATH:.
python tools/export_onnx.py -c yolox_s.pth -f exps/default/yolox_s.py --output-name=yolox_s.onnx --dynamic --decode_in_inference
- 复制模型并执行
cp YOLOX/yolox_s.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
# 修改代码在 src/application/app_yolo.cpp: app_yolo 函数中, 使用 X 的方式即可运行
# test(Yolo::Type::X, TRT::Mode::FP32, "yolox_s");
make yolo -j64
YOLOv5支持
- 下载 YOLOv5
git clone https://github.com/ultralytics/yolov5.git
- 修改代码, 保证动态 batch
# ========== export.py ==========
# yolov5/export.py第160行
# output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output']
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1,25200,85)
- 导出 onnx 模型
cd yolov5
python export.py --weights=yolov5s.pt --dynamic --simplify --include=onnx --opset=11
- 复制模型并执行
cp yolov5/yolov5s.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
# 修改代码在 src/application/app_yolo.cpp: app_yolo 函数中, 使用 V5 的方式即可运行
# test(Yolo::Type::V5, TRT::Mode::FP32, "yolov5s");
make yolo -j64
YOLOv6支持
- 下载 YOLOv6
git clone https://github.com/meituan/YOLOv6.git
- 修改代码, 保证动态 batch,并去除 anchor 维度
# ========== export_onnx.py ==========
# YOLOv6/deploy/ONNX/export_onnx.py第84行
# output_axes = {
# 'outputs': {0: 'batch'},
# }
# 修改为:
output_axes = {
'output': {0: 'batch'},
}
# YOLOv6/deploy/ONNX/export_onnx.py第106行
# torch.onnx.export(model, img, f, verbose=False, opset_version=13,
# training=torch.onnx.TrainingMode.EVAL,
# do_constant_folding=True,
# input_names=['images'],
# output_names=['num_dets', 'det_boxes', 'det_scores', 'det_classes']
# if args.end2end else ['outputs'],
# dynamic_axes=dynamic_axes)
# 修改为:
torch.onnx.export(model, img, f, verbose=False, opset_version=13,
training=torch.onnx.TrainingMode.EVAL,
do_constant_folding=True,
input_names=['images'],
output_names=['num_dets', 'det_boxes', 'det_scores', 'det_classes']
if args.end2end else ['output'],
dynamic_axes=dynamic_axes)
# 根据不同的 head 去除 anchor 维度
# ========== effidehead_distill_ns.py ==========
# YOLOv6/yolov6/models/heads/effidehead_distill_ns.py第141行
# return torch.cat(
# [
# pred_bboxes,
# torch.ones((b, pred_bboxes.shape[1], 1), device=pred_bboxes.device, dtype=pred_bboxes.dtype),
# cls_score_list
# ],
# axis=-1)
# 修改为:
return torch.cat(
[
pred_bboxes,
cls_score_list
],
axis=-1)
# ========== effidehead_fuseab.py ==========
# YOLOv6/yolov6/models/heads/effidehead_fuseab.py第191行
# return torch.cat(
# [
# pred_bboxes,
# torch.ones((b, pred_bboxes.shape[1], 1), device=pred_bboxes.device, dtype=pred_bboxes.dtype),
# cls_score_list
# ],
# axis=-1)
# 修改为:
return torch.cat(
[
pred_bboxes,
cls_score_list
],
axis=-1)
# ========== effidehead_lite.py ==========
# YOLOv6/yolov6/models/heads/effidehead_lite.py第123行
# return torch.cat(
# [
# pred_bboxes,
# torch.ones((b, pred_bboxes.shape[1], 1), device=pred_bboxes.device, dtype=pred_bboxes.dtype),
# cls_score_list
# ],
# axis=-1)
# 修改为:
return torch.cat(
[
pred_bboxes,
cls_score_list
],
axis=-1)
- 导出 onnx 模型
cd YOLOv6
python deploy/ONNX/export_onnx.py --weights yolov6s.pt --img 640 --dynamic-batch --simplify
- 复制模型并执行
cp YOLOv6/yolov6s.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
# 修改代码在 src/application/app_yolo.cpp: app_yolo 函数中, 使用 V6 的方式即可运行
# test(Yolo::Type::V6, TRT::Mode::FP32, "yolov6s");
make yolo -j64
YOLOv7支持
- 下载 YOLOv7
git clone https://github.com/WongKinYiu/yolov7.git
- 导出 onnx 模型
python export.py --dynamic-batch --grid --simplify --weights=yolov7.pt
- 复制模型并执行
cp yolov7/yolov7.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
# 修改代码在 src/application/app_yolo.cpp: app_yolo 函数中, 使用 V7 的方式即可运行
# test(Yolo::Type::V7, TRT::Mode::FP32, "yolov7");
make yolo -j64
YOLOv8支持
- 下载 YOLOv8
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码, 保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第72行,forward函数
# return y if self.export else (y, x)
# 修改为:
return y.permute(0, 2, 1) if self.export else (y, x)
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第323行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 导出 onnx 模型, 在 ultralytics-main 新建导出文件
export.py
内容如下:
# ========== export.py ==========
from ultralytics import YOLO
model = YOLO("yolov8s.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolov8s.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo -j64
YOLOv8-Cls支持
- 下载 YOLOv8
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码, 保证动态 batch
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第323行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
dynamic['output'] = {0: 'batch'}
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 导出 onnx 模型, 在 ultralytics-main 新建导出文件
export.py
内容如下:
# ========== export.py ==========
from ultralytics import YOLO
model = YOLO("yolov8s-cls.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolov8s-cls.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_cls -j64
YOLOv8-Seg支持
- 下载 YOLOv8
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码, 保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第106行,forward函数
# return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
# 修改为:
return (torch.cat([x, mc], 1).permute(0, 2, 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第323行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
- 导出 onnx 模型, 在 ultralytics-main 新建导出文件
export.py
内容如下:
# ========== export.py ==========
from ultralytics import YOLO
model = YOLO("yolov8s-seg.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolov8s-seg.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_seg -j64
YOLOv8-OBB支持
- 下载 YOLOv8
glit clone https://github.com/ultralytics/ultralytics.git
cd ultralytics
git checkout tags/v8.1.0 -b v8.1.0
- 修改代码, 保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第141行,forward函数
# return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
# 修改为:
return torch.cat([x, angle], 1).permute(0, 2, 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第353行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 导出 onnx 模型, 在 ultralytics-main 新建导出文件
export.py
内容如下:
# ========== export.py ==========
from ultralytics import YOLO
model = YOLO("yolov8s-obb.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolov8s-obb.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_obb -j64
YOLOv8-Pose支持
- 下载 YOLOv8
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码, 保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第130行,forward函数
# return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
# 修改为:
return torch.cat([x, pred_kpt], 1).permute(0, 2, 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第323行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
dynamic['output'] = {0: 'batch'}
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
- 导出 onnx 模型, 在 ultralytics-main 新建导出文件
export.py
内容如下:
# ========== export.py ==========
from ultralytics import YOLO
model = YOLO("yolov8s-pose.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolov8s-pose.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_pose -j64
RT-DETR支持
- 前置条件
- tensorRT >= 8.6
- 下载 YOLOv8
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码, 保证动态 batch
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第323行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 导出 onnx 模型,在 ultralytics-main 新建导出文件
export.py
内容如下(可能会由于 torch 版本问题导出失败, 具体可参考 #6144)
from ultralytics import RTDETR
model = RTDETR("rtdetr-l.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- engine 生成
- 方案一:替换 tensorRT_Pro-YOLOv8 中的 onnxparser 解析器,具体可参考文章:RT-DETR推理详解及部署实现
- 方案二:利用 trtexec 工具生成 engine
cp ultralytics/yolov8s.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8/workspace
bash build.sh
- 执行
make rtdetr -j64
ByteTrack支持
- 说明
代码 copy 自:https://github.com/CYYAI/AiInfer/tree/main/utils/tracker/ByteTracker
以 YOLOv8 作为检测器实现基本跟踪功能(其它检测器也行)
- demo 演示
cd tensorRT_Pro-YOLOv8
make bytetrack -j64
YOLOv9支持
- 说明
本项目的 YOLOv9 部署实现并不是官方原版,而是采用的集成到 ultralytics 的 YOLOv9
- 下载 YOLOv8
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码, 保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第75行,forward函数
# return y if self.export else (y, x)
# 修改为:
return y.permute(0, 2, 1) if self.export else (y, x)
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第365行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 导出 onnx 模型, 在 ultralytics-main 新建导出文件
export.py
内容如下:
# ========== export.py ==========
from ultralytics import YOLO
model = YOLO("yolov9c.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolov9c.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo -j64
YOLOv10支持
- 前置条件
- tensorRT >= 8.5
- 下载 YOLOv10
git clone https://github.com/THU-MIG/yolov10
- 修改代码, 保证动态 batch
# ========== exporter.py ==========
# yolov10-main/ultralytics/engine/exporter.py第323行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 导出 onnx 模型,在 yolov10-main 新建导出文件
export.py
内容如下
from ultralytics import YOLO
model = YOLO("yolov10s.pt")
success = model.export(format="onnx", dynamic=True, simplify=True, opset=13)
cd yolov10-main
python export.py
- engine 生成
- 方案一:替换 tensorRT_Pro-YOLOv8 中的 onnxparser 解析器,具体可参考文章:RT-DETR推理详解及部署实现
- 方案二:利用 trtexec 工具生成 engine
cp yolov10-main/yolov10s.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8/workspace
# 取消 build.sh 中 yolov10 engine 生成的注释
bash build.sh
- 执行
make yolo -j64
RTMO支持
- 前置条件
- tensorRT >= 8.6
- RTMO 导出环境搭建
conda create -n mmpose python=3.9
conda activate mmpose
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0rc2"
mim install "mmpose>=1.1.0"
pip install mmdeploy==1.3.1
pip install mmdeploy-runtime==1.3.1
- 项目克隆
git clone https://github.com/open-mmlab/mmpose.git
- 预训练权重下载
- 导出 onnx 模型,在 mmpose-main 新建导出文件
export.py
内容如下:
import torch
from mmpose.apis import init_model
from mmpose.structures.bbox import bbox_xyxy2cs
class MyModel(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.model = init_model(config_file, checkpoint_file, device=device)
test_cfg = {'input_size': (640, 640)}
self.model.neck.switch_to_deploy(test_cfg)
self.model.head.switch_to_deploy(test_cfg)
self.model.head.dcc.switch_to_deploy(test_cfg)
def forward(self, x):
x = self.model.backbone(x)
x = self.model.neck(x)
cls_scores, bbox_preds, _, kpt_vis, pose_vecs = self.model.head(x)[:5]
scores = self.model.head._flatten_predictions(cls_scores).sigmoid()
flatten_bbox_preds = self.model.head._flatten_predictions(bbox_preds)
flatten_pose_vecs = self.model.head._flatten_predictions(pose_vecs)
flatten_kpt_vis = self.model.head._flatten_predictions(kpt_vis).sigmoid()
bboxes = self.model.head.decode_bbox(flatten_bbox_preds, self.model.head.flatten_priors,
self.model.head.flatten_stride)
dets = torch.cat([bboxes, scores], dim=2)
grids = self.model.head.flatten_priors
bbox_cs = torch.cat(bbox_xyxy2cs(dets[..., :4], self.model.head.bbox_padding), dim=-1)
keypoints = self.model.head.dcc.forward_test(flatten_pose_vecs, bbox_cs, grids)
pred_kpts = torch.cat([keypoints, flatten_kpt_vis.unsqueeze(-1)], dim=-1)
bs, bboxes, ny, nx = map(int, pred_kpts.shape)
bs = -1
pred_kpts = pred_kpts.view(bs, bboxes, ny*nx)
return torch.cat([dets, pred_kpts], dim=2)
if __name__ == "__main__":
device = "cpu"
config_file = "configs/body_2d_keypoint/rtmo/body7/rtmo-s_8xb32-600e_body7-640x640.py"
checkpoint_file = "rtmo-s_8xb32-600e_body7-640x640-dac2bf74_20231211.pth"
model = MyModel()
model.eval()
x = torch.zeros(1, 3, 640, 640, device=device)
dynamic_batch = {'images': {0: 'batch'}, 'output': {0: 'batch'}}
torch.onnx.export(
model,
(x,),
"rtmo-s_8xb32-600e_body7-640x640.onnx",
input_names=["images"],
output_names=["output"],
opset_version=17,
dynamic_axes=dynamic_batch
)
# Checks
import onnx
model_onnx = onnx.load("rtmo-s_8xb32-600e_body7-640x640.onnx")
# onnx.checker.check_model(model_onnx) # check onnx model
# Simplify
try:
import onnxsim
print(f"simplifying with onnxsim {onnxsim.__version__}...")
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "Simplified ONNX model could not be validated"
except Exception as e:
print(f"simplifier failure: {e}")
onnx.save(model_onnx, "rtmo-s_8xb32-600e_body7-640x640.onnx")
print(f"simplify done.")
cd mmpose-main
conda activate mmpose
python export.py
- engien 生成
- 方案一:替换 tensorRT_Pro-YOLOv8 中的 onnxparser 解析器,具体可参考文章:RT-DETR推理详解及部署实现
- 方案二:利用 trtexec 工具生成 engine
cp mmpose/rtmo-s_8xb32-600e_body7-640x640.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8/workspace
# 取消 build.sh 中 rtmo engine 生成的注释
bash build.sh
- 执行
make rtmo -j64
LayerNorm Plugin支持
- 说明
- 当需要在低版本的 tensorRT 中解析 LayerNorm 算子时可以通过该插件支持
- LayerNorm 插件实现代码 copy 自 CUDA-BEVFusion/src/plugins/custom_layernorm.cu,代码进行了略微修改
- LayerNorm 插件的封装在推理时存在一些问题,因此并未使用
- libcustom_layernorm.so 生成
cd tensorRT_Pro-YOLOv8
mkdir build && cd build
cmake .. && make -j64
cp libcustom_layernorm.so ../workspace
- ONNX 模型修改(RTMO 为例说明,其它模型类似)
利用 onnx_graphsurgeon 修改原始 LayerNorm 的 op_type,代码如下:
import onnx
import onnx_graphsurgeon as gs
# 加载 ONNX 模型
input_model_path = "rtmo-s_8xb32-600e_body7-640x640.onnx"
output_model_path = "rtmo-s_8xb32-600e_body7-640x640.plugin.onnx"
graph = gs.import_onnx(onnx.load(input_model_path))
# 遍历图中的所有节点
for node in graph.nodes:
if node.op == "LayerNormalization":
node.op = "CustomLayerNormalization"
# 添加自定义属性
node.attrs["name"] = "LayerNormPlugin"
node.attrs["info"] = "This is custom LayerNormalization node"
# 删除无用的节点和张量
graph.cleanup()
# 导出修改后的模型
onnx.save(gs.export_onnx(graph), output_model_path)
- engine 生成
利用 trtexec 工具加载插件解析 ONNX,新建 build.sh 脚本文件并执行,内容如下:
#! /usr/bin/bash
TRTEXEC=/home/jarvis/lean/TensorRT-8.5.1.7/bin/trtexec
# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/jarvis/lean/TensorRT-8.5.1.7/lib
${TRTEXEC} \
--onnx=rtmo-s_8xb32-600e_body7-640x640.plugin.onnx \
--plugins=libcustom_layernorm.so \
--minShapes=images:1x3x640x640 \
--optShapes=images:1x3x640x640 \
--maxShapes=images:4x3x640x640 \
--memPoolSize=workspace:2048 \
--saveEngine=rtmo-s_8xb32-600e_body7-640x640.plugin.FP32.trtmodel \
> trtexec_output.log 2>&1
PP-OCRv4支持
- 导出环境搭建
conda create --name paddleocr python=3.9
conda activate paddleocr
pip install shapely scikit-image imgaug pyclipper lmdb tqdm numpy==1.26.4 rapidfuzz onnxruntime
pip install "opencv-python<=4.6.0.66" "opencv-contrib-python<=4.6.0.66" cython "Pillow>=10.0.0" pyyaml requests
pip install paddlepaddle paddleocr paddle2onnx
- 项目克隆
git clone https://github.com/PaddlePaddle/PaddleOCR.git
- 预训练权重下载
-
导出 onnx 模型,具体流程请参考:PaddleOCR-PP-OCRv4推理详解及部署实现(上)
-
engine 生成
- 方案一:利用 TRT::compile 接口,HardSwish 算子解析问题可以通过插件或者替换 onnxparser 解析器解决
- 方案二:利用 trtexec 工具生成 engine (recommend)
cd tensorRT_Pro-YOLOv8/workspace
bash ocr_build.sh
- 执行
make ppocr -j64
LaneATT支持
- 导出环境搭建
conda create -n laneatt python=3.10
conda activate laneatt
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install pyyaml opencv-python scipy imgaug numpy==1.26.4 tqdm p_tqdm ujson scikit-learn tensorboard
pip install onnx onnxruntime onnx-simplifier
- 项目克隆
git clone https://github.com/lucastabelini/LaneATT.git
- 预训练权重下载
gdown "https://drive.google.com/uc?id=1R638ou1AMncTCRvrkQY6I-11CPwZy23T" # main experiments on TuSimple, CULane and LLAMAS (1.3 GB)
unzip laneatt_experiments.zip
- 导出 onnx 模型,在 laneatt-main 新建导出文件
export.py
内容如下:
import torch
from lib.models.laneatt import LaneATT
class LaneATTONNX(torch.nn.Module):
def __init__(self, model):
super(LaneATTONNX, self).__init__()
# Params
self.fmap_h = model.fmap_h # 11
self.fmap_w = model.fmap_w # 20
self.anchor_feat_channels = model.anchor_feat_channels # 64
self.anchors = model.anchors
self.cut_xs = model.cut_xs
self.cut_ys = model.cut_ys
self.cut_zs = model.cut_zs
self.invalid_mask = model.invalid_mask
# Layers
self.feature_extractor = model.feature_extractor
self.conv1 = model.conv1
self.cls_layer = model.cls_layer
self.reg_layer = model.reg_layer
self.attention_layer = model.attention_layer
# Exporting the operator eye to ONNX opset version 11 is not supported
attention_matrix = torch.eye(1000)
self.non_diag_inds = torch.nonzero(attention_matrix == 0., as_tuple=False)
self.non_diag_inds = self.non_diag_inds[:, 1] + 1000 * self.non_diag_inds[:, 0] # 999000
self.anchor_parts_1 = self.anchors[:, 2:4]
self.anchor_parts_2 = self.anchors[:, 4:]
def forward(self, x):
batch_features = self.feature_extractor(x)
batch_features = self.conv1(batch_features)
# batch_anchor_features = self.cut_anchor_features(batch_features)
# batchx15360
batch_anchor_features = batch_features.reshape(-1, int(batch_features.numel()))
# h, w = batch_features.shape[2:4] # 12, 20
indices = self.cut_xs + 20 * self.cut_ys + 12 * 20 * self.cut_zs
batch_anchor_features = batch_anchor_features[:, indices].\
view(-1, 1000, self.anchor_feat_channels, self.fmap_h, 1)
# batch_anchor_features[self.invalid_mask] = 0
batch_anchor_features = batch_anchor_features * torch.logical_not(self.invalid_mask)
# Join proposals from all images into a single proposals features batch
# batchx1000x704
batch_anchor_features = batch_anchor_features.view(-1, 1000, self.anchor_feat_channels * self.fmap_h)
# Add attention features
softmax = torch.nn.Softmax(dim=2)
# batchx1000x999
scores = self.attention_layer(batch_anchor_features)
attention = softmax(scores)
# bs, _, _ = scores.shape
bs, _, _ =scores.shape
attention_matrix = torch.zeros(bs, 1000 * 1000, device=x.device)
attention_matrix[:, self.non_diag_inds] = attention.reshape(-1, int(attention.numel()))
attention_matrix = attention_matrix.view(-1, 1000, 1000)
attention_features = torch.matmul(torch.transpose(batch_anchor_features, 1, 2),
torch.transpose(attention_matrix, 1, 2)).transpose(1, 2)
batch_anchor_features = torch.cat((attention_features, batch_anchor_features), dim=2)
# Predict
cls_logits = self.cls_layer(batch_anchor_features)
reg = self.reg_layer(batch_anchor_features)
anchor_expanded_1 = self.anchor_parts_1.repeat(reg.shape[0], 1, 1)
anchor_expanded_2 = self.anchor_parts_2.repeat(reg.shape[0], 1, 1)
# Add offsets to anchors (1000, 2+2+73)
reg_proposals = torch.cat([softmax(cls_logits), anchor_expanded_1, anchor_expanded_2 + reg], dim=2)
return reg_proposals
def export_onnx(onnx_file_path):
# e.g. laneatt_r18_culane
backbone_name = 'resnet18'
checkpoint_file_path = 'experiments/laneatt_r18_culane/models/model_0015.pt'
anchors_freq_path = 'data/culane_anchors_freq.pt'
# Load specified checkpoint
model = LaneATT(backbone=backbone_name, anchors_freq_path=anchors_freq_path, topk_anchors=1000)
checkpoint = torch.load(checkpoint_file_path)
model.load_state_dict(checkpoint['model'])
model.eval()
# Export to ONNX
onnx_model = LaneATTONNX(model)
dummy_input = torch.randn(1, 3, 360, 640)
dynamic_batch = {'images': {0: 'batch'}, 'output': {0: 'batch'}}
torch.onnx.export(
onnx_model,
dummy_input,
onnx_file_path,
input_names=["images"],
output_names=["output"],
dynamic_axes=dynamic_batch
)
import onnx
model_onnx = onnx.load(onnx_file_path)
# Simplify
try:
import onnxsim
print(f"simplifying with onnxsim {onnxsim.__version__}...")
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "Simplified ONNX model could not be validated"
except Exception as e:
print(f"simplifier failure: {e}")
onnx.save(model_onnx, "laneatt.sim.onnx")
print(f"simplify done. onnx model save in laneatt.sim.onnx")
if __name__ == '__main__':
export_onnx('./laneatt.onnx')
cd laneatt-main
conda activate laneatt
python export.py
- engine 生成
- 方案一:利用 TRT::compile 接口,ScatterND 算子解析问题可以通过插件或者替换 onnxparser 解析器解决
- 方案二:利用 trtexec 工具生成 engine(recommend)
cd tensorRT_Pro-YOLOv8/workspace
bash lane_build.sh
CLRNet支持
1. 前置条件
- tensorRT >= 8.6
2. 导出环境搭建
conda create -n clrnet python=3.9
conda activate clrnet
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install pandas addict scikit-learn opencv-python pytorch_warmup scikit-image tqdm p_tqdm
pip install imgaug yapf timm pathspec pthflops
pip install numpy==1.26.4 mmcv==1.2.5 albumentations==0.4.6 ujson==1.35 Shapely==2.0.5
pip install onnx onnx-simplifier onnxruntime
3. 项目克隆
git clone https://github.com/Turoad/CLRNet.git
4. 预训练权重下载
- 下载链接(Baidu Drive)
5. 导出 onnx 模型,在 clrnet-main 新建导出文件 export.py
内容如下:
import math
import torch
import torch.nn.functional as F
from clrnet.utils.config import Config
from mmcv.parallel import MMDataParallel
from clrnet.models.registry import build_net
class CLRNetONNX(torch.nn.Module):
def __init__(self, model):
super(CLRNetONNX, self).__init__()
self.backbone = model.backbone
self.neck = model.neck
self.head = model.heads
def forward(self, x):
x = self.backbone(x)
x = self.neck(x)
batch_features = list(x[len(x) - self.head.refine_layers:])
# 1x64x10x25+1x64x20x50+1x64x40x100
batch_features.reverse()
batch_size = batch_features[-1].shape[0]
# 1x192x78
priors = self.head.priors.repeat(batch_size, 1, 1)
# 1x192x36
priors_on_featmap = self.head.priors_on_featmap.repeat(batch_size, 1, 1)
prediction_lists = []
prior_features_stages = []
for stage in range(self.head.refine_layers):
# 1. anchor ROI pooling
num_priors = int(priors_on_featmap.shape[1])
prior_xs = torch.flip(priors_on_featmap, dims=[2])
batch_prior_features = self.head.pool_prior_features(
batch_features[stage], num_priors, prior_xs)
prior_features_stages.append(batch_prior_features)
# 2. ROI gather
fc_features = self.head.roi_gather(prior_features_stages,
batch_features[stage], stage)
# 3. cls and reg head
# fc_features = fc_features.view(num_priors, batch_size, -1).reshape(batch_size * num_priors, self.head.fc_hidden_dim)
fc_features = fc_features.view(num_priors, -1, 64).reshape(-1, self.head.fc_hidden_dim)
cls_features = fc_features.clone()
reg_features = fc_features.clone()
for cls_layer in self.head.cls_modules:
cls_features = cls_layer(cls_features)
for reg_layer in self.head.reg_modules:
reg_features = reg_layer(reg_features)
cls_logits = self.head.cls_layers(cls_features)
reg = self.head.reg_layers(reg_features)
# cls_logits = cls_logits.reshape(batch_size, -1, cls_logits.shape[1]) # (B, num_priors, 2)
cls_logits = cls_logits.reshape(-1, 192, 2) # (B, num_priors, 2)
# add softmax
softmax = torch.nn.Softmax(dim=2)
cls_logits = softmax(cls_logits)
# reg = reg.reshape(batch_size, -1, reg.shape[1])
reg = reg.reshape(-1, 192, 76)
predictions = priors.clone()
predictions[:, :, :2] = cls_logits
predictions[:, :, 2:5] += reg[:, :, :3]
# add n_strips * length
# predictions[:, :, 5] = reg[:, :, 3] # length
predictions[:, :, 5] = reg[:, :, 3] * self.head.n_strips # length
def tran_tensor(t):
return t.unsqueeze(2).clone().repeat(1, 1, self.head.n_offsets)
batch_size = reg.shape[0]
predictions[..., 6:] = (
tran_tensor(predictions[..., 3]) * (self.head.img_w - 1) +
((1 - self.head.prior_ys.repeat(batch_size, num_priors, 1) -
tran_tensor(predictions[..., 2])) * self.head.img_h /
torch.tan(tran_tensor(predictions[..., 4]) * math.pi + 1e-5))) / (self.head.img_w - 1)
prediction_lines = predictions.clone()
predictions[..., 6:] += reg[..., 4:]
prediction_lists.append(predictions)
if stage != self.head.refine_layers - 1:
priors = prediction_lines.detach().clone()
priors_on_featmap = priors[..., 6 + self.head.sample_x_indexs]
return prediction_lists[-1]
def export_onnx(onnx_file_path):
# e.g. clrnet_culane_r18
cfg = Config.fromfile("configs/clrnet/clr_resnet18_culane.py")
checkpoint_file_path = "culane_r18.pth"
# load checkpoint
net = build_net(cfg)
net = MMDataParallel(net, device_ids=range(1)).cuda()
pretrained_model = torch.load(checkpoint_file_path)
net.load_state_dict(pretrained_model['net'], strict=False)
net.eval()
model = net.to("cpu")
onnx_model = CLRNetONNX(model.module)
# Export to ONNX
dummy_input = torch.randn(1, 3 ,320, 800)
dynamic_batch = {'images': {0: 'batch'}, 'output': {0: 'batch'}}
torch.onnx.export(
onnx_model,
dummy_input,
onnx_file_path,
input_names=["images"],
output_names=["output"],
opset_version=17,
dynamic_axes=dynamic_batch
)
print(f"finished export onnx model")
import onnx
model_onnx = onnx.load(onnx_file_path)
onnx.checker.check_model(model_onnx) # check onnx model
# Simplify
try:
import onnxsim
print(f"simplifying with onnxsim {onnxsim.__version__}...")
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "Simplified ONNX model could not be validated"
except Exception as e:
print(f"simplifier failure: {e}")
onnx.save(model_onnx, "clrnet.sim.onnx")
print(f"simplify done. onnx model save in clrnet.sim.onnx")
if __name__ == "__main__":
export_onnx("./clrnet.onnx")
cd clrnet-main
conda activate clrnet
python export.py
5. engine 生成
- 方案一:利用 TRT::compile 接口,GridSample 和 LayerNormalization 算子解析问题可以通过插件或者替换 onnxparser 解析器解决
- 方案二:利用 trtexec 工具生成 engine(recommend)
cd tensorRT_Pro-YOLOv8/workspace
bash lane_build.sh
CLRerNet支持
1. 前置条件
- tensorRT >= 8.6
2. 导出环境搭建
conda create -n clrernet python=3.8
conda activate clrernet
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -U openmim==0.3.3
mim install mmcv-full==1.7.0
pip install albumentations==0.4.6 p_tqdm==1.3.3 yapf==0.40.1 mmdet==2.28.0
pip install pytest pytest-cov tensorboard
pip install onnx onnx-simplifier onnxruntime
3. 项目克隆
git clone https://github.com/hirotomusiker/CLRerNet.git
4. 预训练权重下载
- 下载链接(Baidu Drive)
5. 导出 onnx 模型,在 clrernet-main 新建导出文件 export.py
内容如下:
import torch
from mmcv import Config
from mmdet.models import build_detector
from mmcv.runner import load_checkpoint
class CLRerNetONNX(torch.nn.Module):
def __init__(self, model):
super(CLRerNetONNX, self).__init__()
self.model = model
self.bakcbone = model.backbone
self.neck = model.neck
self.head = model.bbox_head
def forward(self, x):
x = self.bakcbone(x)
x = self.neck(x)
batch = x[0].shape[0]
feature_pyramid = list(x[len(x) - self.head.refine_layers:])
# 1x64x10x25+1x64x20x50+1x64x40x100
feature_pyramid.reverse()
_, sampled_xs = self.head.anchor_generator.generate_anchors(
self.head.anchor_generator.prior_embeddings.weight,
self.head.prior_ys,
self.head.sample_x_indices,
self.head.img_w,
self.head.img_h
)
anchor_params = self.head.anchor_generator.prior_embeddings.weight.clone().repeat(batch, 1, 1)
priors_on_featmap = sampled_xs.repeat(batch, 1, 1)
predictions_list = []
pooled_features_stages = []
for stage in range(self.head.refine_layers):
# 1. anchor ROI pooling
prior_xs = priors_on_featmap
pooled_features = self.head.pool_prior_features(feature_pyramid[stage], prior_xs)
pooled_features_stages.append(pooled_features)
# 2. ROI gather
fc_features = self.head.attention(pooled_features_stages, feature_pyramid, stage)
# fc_features = fc_features.view(self.head.num_priors, batch, -1).reshape(batch * self.head.num_priors, self.head.fc_hidden_dim)
fc_features = fc_features.view(self.head.num_priors, -1, 64).reshape(-1, self.head.fc_hidden_dim)
# 3. cls and reg head
cls_features = fc_features.clone()
reg_features = fc_features.clone()
for cls_layer in self.head.cls_modules:
cls_features = cls_layer(cls_features)
for reg_layer in self.head.reg_modules:
reg_features = reg_layer(reg_features)
cls_logits = self.head.cls_layers(cls_features)
# cls_logits = cls_logits.reshape(batch, -1, cls_logits.shape[1])
cls_logits = cls_logits.reshape(-1, 192, 2)
reg = self.head.reg_layers(reg_features)
# reg = reg.reshape(batch, -1, reg.shape[1])
reg = reg.reshape(-1, 192, 76)
# 4. reg processing
anchor_params += reg[:, :, :3]
updated_anchor_xs, _ = self.head.anchor_generator.generate_anchors(
anchor_params.view(-1, 3),
self.head.prior_ys,
self.head.sample_x_indices,
self.head.img_w,
self.head.img_h
)
# updated_anchor_xs = updated_anchor_xs.view(batch, self.head.num_priors, -1)
updated_anchor_xs = updated_anchor_xs.view(-1, 192, 72)
reg_xs = updated_anchor_xs + reg[..., 4:]
# start_y, start_x, theta
# some problem.
# anchor_params[:, :, 0] = 1.0 - anchor_params[:, :, 0]
# anchor_params_ = anchor_params.clone()
# anchor_params_[:, :, 0] = 1.0 - anchor_params_[:, :, 0]
# print(f"anchor_params.shape = {anchor_params_.shape}")
softmax = torch.nn.Softmax(dim=2)
cls_logits = softmax(cls_logits)
reg[:, :, 3:4] = reg[:, :, 3:4] * self.head.n_strips
predictions = torch.concat([cls_logits, anchor_params, reg[:, :, 3:4], reg_xs], dim=2)
# predictions = torch.concat([cls_logits, anchor_params_, reg[:, :, 3:4], reg_xs], dim=2)
predictions_list.append(predictions)
if stage != self.head.refine_layers - 1:
anchor_params = anchor_params.detach().clone()
priors_on_featmap = updated_anchor_xs.detach().clone()[
..., self.head.sample_x_indices
]
return predictions_list[-1]
if __name__ == "__main__":
cfg = Config.fromfile("configs/clrernet/culane/clrernet_culane_dla34.py")
model = build_detector(cfg.model, test_cfg=cfg.get("test_cfg"))
load_checkpoint(model, "clrernet_culane_dla34.pth", map_location="cpu")
model.eval()
model = model.to("cpu")
# Export to ONNX
onnx_model = CLRerNetONNX(model)
dummy_input = torch.randn(1, 3, 320, 800)
dynamic_batch = {'images': {0: 'batch'}, 'output': {0: 'batch'}}
torch.onnx.export(
onnx_model,
dummy_input,
"model.onnx",
input_names=["images"],
output_names=["output"],
opset_version=17,
dynamic_axes=dynamic_batch
)
print(f"finished export onnx model")
import onnx
model_onnx = onnx.load("model.onnx")
onnx.checker.check_model(model_onnx) # check onnx model
# Simplify
try:
import onnxsim
print(f"simplifying with onnxsim {onnxsim.__version__}...")
model_onnx, check = onnxsim.simplify(model_onnx)
assert check, "Simplified ONNX model could not be validated"
except Exception as e:
print(f"simplifier failure: {e}")
onnx.save(model_onnx, "clrernet.sim.onnx")
print(f"simplify done. onnx model save in clrernet.sim.onnx")
cd clrernet-main
conda activate clrernet
python export.py
5. engine 生成
- 方案一:利用 TRT::compile 接口,GridSample 和 LayerNormalization 算子解析问题可以通过插件或者替换 onnxparser 解析器解决
- 方案二:利用 trtexec 工具生成 engine(recommend)
cd tensorRT_Pro-YOLOv8/workspace
bash lane_build.sh
YOLO11支持
- 下载 YOLO11
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码,保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第68行,forward函数
# return y if self.export else (y, x)
# 修改为:
return y.permute(0, 2, 1) if self.export else (y, x)
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第400行
# output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
# dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
# 修改为:
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output"]
dynamic = self.args.dynamic
if dynamic:
dynamic = {"images": {0: "batch"}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic["output0"] = {0: "batch"} # shape(1, 84, 8400)
- 导出 onnx 模型,在 ultralytics-main 新建导出文件
export.py
内容如下:
from ultralytics import YOLO
model = YOLO("yolo11s.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolo11s.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo -j64
YOLO11-Cls支持
- 下载 YOLO11
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码,保证动态 batch
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第400行
# output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output0"]
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
# dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 84, 8400)
# 修改为:
output_names = ["output0", "output1"] if isinstance(self.model, SegmentationModel) else ["output"]
dynamic = self.args.dynamic
if dynamic:
dynamic = {"images": {0: "batch"}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic["output0"] = {0: "batch", 2: "anchors"} # shape(1, 116, 8400)
dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic["output0"] = {0: "batch"} # shape(1, 84, 8400)
- 导出 onnx 模型,在 ultralytics-main 新建导出文件
export.py
内容如下:
from ultralytics import YOLO
model = YOLO("yolo11s-cls.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolo11s-cls.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_cls -j64
YOLO11-Seg支持
- 下载 YOLO11
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码,保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第186行,forward函数
# return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
# 修改为:
return (torch.cat([x, mc], 1).permute(0, 2, 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第400行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
- 导出 onnx 模型,在 ultralytics-main 新建导出文件
export.py
内容如下:
from ultralytics import YOLO
model = YOLO("yolo11s-seg.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolo11s-seg.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_seg -j64
YOLO11-OBB支持
- 下载 YOLO11
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码,保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第212行,forward函数
# return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
# 修改为:
return torch.cat([x, angle], 1).permute(0, 2, 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第400行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output'] = {0: 'batch'} # shape(1, 84, 8400)
- 导出 onnx 模型,在 ultralytics-main 新建导出文件
export.py
内容如下:
from ultralytics import YOLO
model = YOLO("yolo11s-obb.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolo11s-obb.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_obb -j64
YOLO11-Pose支持
git clone https://github.com/ultralytics/ultralytics.git
- 修改代码,保证动态 batch
# ========== head.py ==========
# ultralytics/nn/modules/head.py第239行,forward函数
# return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
# 修改为:
return torch.cat([x, pred_kpt], 1).permute(0, 2, 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
# ========== exporter.py ==========
# ultralytics/engine/exporter.py第400行
# output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output0']
# dynamic = self.args.dynamic
# if dynamic:
# dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
# if isinstance(self.model, SegmentationModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
# dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
# elif isinstance(self.model, DetectionModel):
# dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
# 修改为:
output_names = ['output0', 'output1'] if isinstance(self.model, SegmentationModel) else ['output']
dynamic = self.args.dynamic
if dynamic:
dynamic = {'images': {0: 'batch'}} # shape(1,3,640,640)
dynamic['output'] = {0: 'batch'}
if isinstance(self.model, SegmentationModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 116, 8400)
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
elif isinstance(self.model, DetectionModel):
dynamic['output0'] = {0: 'batch', 2: 'anchors'} # shape(1, 84, 8400)
- 导出 onnx 模型,在 ultralytics-main 新建导出文件
export.py
内容如下:
from ultralytics import YOLO
model = YOLO("yolo11s-pose.pt")
success = model.export(format="onnx", dynamic=True, simplify=True)
cd ultralytics-main
python export.py
- 复制模型并执行
cp ultralytics/yolo11s-pose.onnx tensorRT_Pro-YOLOv8/workspace
cd tensorRT_Pro-YOLOv8
make yolo_pose -j64
编译接口
TRT::compile(
mode, // FP32、FP16、INT8
test_batch_size, // max batch size
onnx_file, // source
model_file, // save to
{}, // redefine the input shape
int8process, // the recall function for calibration
"inference", // the dir where the image data is used for calibration
"" // the dir where the data generated from calibration is saved(a.k.a where to load the calibration data.)
);
- tensorRT_Pro 原编译接口, 支持 FP32、FP16、INT8 编译
- 模型的编译工作也可以通过
trtexec
工具完成
推理接口
// 创建推理引擎在 0 号显卡上
auto engine = YoloPose::create_infer(
engine_file, // engine file
deviceid, // gpu id
0.25f, // confidence threshold
0.45f, // nms threshold
YoloPose::NMSMethod::FastGPU, // NMS method, fast GPU / CPU
1024, // max objects
false // preprocess use multi stream
);
// 加载图像
auto image = cv::imread("inference/car.jpg");
// 推理并获取结果
auto boxes = engine->commit(image).get() // 得到的是 vector<Box>