This repository provides Pytorch implementation for [ICML2025] Learning Invariant Causal Mechanism from Vision-Language Models.
Figure 1. Overview of CLIP-ICM.
# create env
conda create -n clip-icm python=3.9 -y
conda activate clip-icm
# install deps
pip install -r requirements.txt
├── CLIP/ # CLIP model implementation and related files
├── DomainBed/ # Domain generalization benchmark
├── clip_icm.py # CLIP ICM-related functionality
├── converter_domainbed.py # DomainBed data conversion utilities
├── engine.py # Training engine
├── imagenet_stubs.py # ImageNet stubs for testing
├── main.py # Main entry point for the project
├── README.md # Project-level README
├── requirements.txt # Python dependencies for the project
├── utils.py # Utility functions
If you find our work and codes useful, please consider citing our paper and star our repository (🥰🎉Thanks!!!):
@inproceedings{songLearningInvariantCausal2025,
title = {Learning {{Invariant Causal Mechanism}} from {{Vision-Language Models}}},
booktitle = {Forty-Second {{International Conference}} on {{Machine Learning}}},
author = {Song, Zeen and Zhao, Siyu and Zhang, Xingyu and Li, Jiangmeng and Zheng, Changwen and Qiang, Wenwen},
year = {2025},
month = may,
urldate = {2025-06-06},
langid = {english}
}