Extract and describe content from documents using Vision Language Models.
https://github.com/MDGrey33/pyvisionai
- Python 3.8 or higher
- Operating system: Windows, macOS, or Linux
- Disk space: At least 1GB free space (more if using local Llama model)
- Extract text and images from PDF, DOCX, PPTX, and HTML files
- Capture interactive HTML pages as images with full rendering
- Describe images using:
- Cloud-based models (OpenAI GPT-4 Vision, Anthropic Claude Vision)
- Local models (Ollama's Llama Vision)
- Save extracted text and image descriptions in markdown format
- Support for both CLI and library usage
- Multiple extraction methods for different use cases
- Detailed logging with timestamps for all operations
- Customizable image description prompts
For macOS users, you can install using Homebrew:
brew tap mdgrey33/pyvisionai
brew install pyvisionai
For more details and configuration options, see the Homebrew tap repository.
-
Install System Dependencies
# macOS (using Homebrew) brew install --cask libreoffice # Required for DOCX/PPTX processing brew install poppler # Required for PDF processing pip install playwright # Required for HTML processing playwright install # Install browser dependencies # Ubuntu/Debian sudo apt-get update sudo apt-get install -y libreoffice # Required for DOCX/PPTX processing sudo apt-get install -y poppler-utils # Required for PDF processing pip install playwright # Required for HTML processing playwright install # Install browser dependencies # Windows # Download and install: # - LibreOffice: https://www.libreoffice.org/download/download/ # - Poppler: http://blog.alivate.com.au/poppler-windows/ # Add poppler's bin directory to your system PATH pip install playwright playwright install
-
Install PyVisionAI
# Using pip pip install pyvisionai # Using poetry (will automatically install playwright as a dependency) poetry add pyvisionai poetry run playwright install # Install browser dependencies
By default, PyVisionAI uses the following directory structure:
content/
├── source/ # Default input directory for files to process
├── extracted/ # Default output directory for processed files
└── log/ # Directory for log files and benchmarks
These directories are created automatically when needed, but you can:
- Create them manually:
mkdir -p content/source content/extracted content/log
- Override them with custom paths:
# Specify custom input and output directories file-extract -t pdf -s /path/to/inputs -o /path/to/outputs # Process a single file with custom output file-extract -t pdf -s ~/documents/file.pdf -o ~/results
Note: While the default directories provide a organized structure, you're free to use any directory layout that suits your needs by specifying custom paths with the -s
(source) and -o
(output) options.
For cloud image description (default, recommended):
# Set OpenAI API key (for GPT-4 Vision)
export OPENAI_API_KEY='your-openai-key'
# Or set Anthropic API key (for Claude Vision)
export ANTHROPIC_API_KEY='your-anthropic-key'
For local image description (optional):
# Install Ollama
# macOS
brew install ollama
# Linux
curl -fsSL https://ollama.com/install.sh | sh
# Windows
# Download from https://ollama.com/download/windows
# Start Ollama server
ollama serve
# Pull the required model
ollama pull llama3.2-vision
# Verify installation
ollama list # Should show llama3.2-vision
curl http://localhost:11434/api/tags # Should return JSON response
Note: The local Llama model:
- Runs entirely on your machine
- No API key required
- Requires about 8GB of disk space
- Needs 16GB+ RAM for optimal performance
- May be slower than cloud models but offers privacy
- Extract text and images from PDF, DOCX, PPTX, and HTML files
- Capture interactive HTML pages as images with full rendering
- Describe images using:
- Cloud-based models (OpenAI GPT-4 Vision, Anthropic Claude Vision)
- Local models (Ollama's Llama Vision)
- Save extracted text and image descriptions in markdown format
- Support for both CLI and library usage
- Multiple extraction methods for different use cases
- Detailed logging with timestamps for all operations
-
Extract Content from Files
# Process a single file (using default page-as-image method) file-extract -t pdf -s path/to/file.pdf -o output_dir file-extract -t docx -s path/to/file.docx -o output_dir file-extract -t pptx -s path/to/file.pptx -o output_dir file-extract -t html -s path/to/file.html -o output_dir # Process with specific model file-extract -t pdf -s input.pdf -o output_dir -m claude file-extract -t pdf -s input.pdf -o output_dir -m gpt4 file-extract -t pdf -s input.pdf -o output_dir -m llama # Process with specific extractor file-extract -t pdf -s input.pdf -o output_dir -e text_and_images # Process all files in a directory file-extract -t pdf -s input_dir -o output_dir # Example with custom prompt file-extract -t pdf -s document.pdf -o output_dir -p "Extract the exact text as present in the image and write one sentence about each visual in the image"
Note: The custom prompt for file extraction will affect the content of the output document. In case of page_as_image It should contain instructions to extract text and describe visuals. Variations are acceptable as long as they encompass these tasks. Avoid prompts like "What's the color of this picture?" as they may not yield the desired results.
-
Describe Images
# Using GPT-4 Vision (default) describe-image -i path/to/image.jpg # Using Claude Vision (with --model parameter) describe-image -i path/to/image.jpg -m claude -k your-anthropic-key # Using local Llama model (with --model parameter) describe-image -i path/to/image.jpg -m llama # Using custom prompt describe-image -i image.jpg -p "List the main colors in this image" # Using legacy --use-case parameter (deprecated, use --model instead) describe-image -i path/to/image.jpg -u claude -k your-anthropic-key # Additional options describe-image -i image.jpg -v # Verbose output
Note: The
-u/--use-case
parameter is deprecated but maintained for backward compatibility. Please use-m/--model
instead.
from pyvisionai import (
create_extractor,
describe_image_openai,
describe_image_claude,
describe_image_ollama
)
# 1. Extract content from files
# Using GPT-4 Vision (default)
extractor = create_extractor("pdf")
output_path = extractor.extract("input.pdf", "output_dir")
# Using Claude Vision
extractor = create_extractor("pdf", model="claude")
output_path = extractor.extract("input.pdf", "output_dir")
# Using specific extraction method
extractor = create_extractor("pdf", extractor_type="text_and_images")
output_path = extractor.extract("input.pdf", "output_dir")
# 2. Describe images
# Using GPT-4 Vision
description = describe_image_openai(
"image.jpg",
model="gpt-4o-mini", # default
api_key="your-openai-key", # optional if set in environment
max_tokens=300, # default
prompt="Describe this image focusing on colors and textures" # optional
)
# Using Claude Vision
description = describe_image_claude(
"image.jpg",
api_key="your-anthropic-key", # optional if set in environment
prompt="Describe this image focusing on colors and textures" # optional
)
# Using local Llama model
description = describe_image_ollama(
"image.jpg",
model="llama3.2-vision", # default
prompt="List the main objects in this image" # optional
)
The application maintains detailed logs of all operations:
- By default, logs are stored in
content/log/
with timestamp-based filenames - Each run creates a new log file:
pyvisionai_YYYYMMDD_HHMMSS.log
- Logs include:
- Timestamp for each operation
- Processing steps and their status
- Error messages and warnings
- Extraction method used
- Input and output file paths
# Required for OpenAI Vision (if using GPT-4)
export OPENAI_API_KEY='your-openai-key'
# Required for Claude Vision (if using Claude)
export ANTHROPIC_API_KEY='your-anthropic-key'
# Optional: Ollama host (if using local description)
export OLLAMA_HOST='http://localhost:11434'
-
Memory Management
- Use
text_and_images
method for large documents - Process files in smaller batches
- Monitor memory usage during batch processing
- Clean up temporary files regularly
- Use
-
Processing Speed
- Cloud models (GPT-4, Claude) are generally faster than local models
- Use parallel processing for batch operations
- Consider SSD storage for better I/O performance
- Optimize image sizes before processing
-
API Usage
- Implement proper rate limiting
- Use appropriate retry mechanisms
- Cache results when possible
- Monitor API quotas and usage
This project is licensed under the Apache License 2.0.
file-extract [-h] -t TYPE -s SOURCE -o OUTPUT [-e EXTRACTOR] [-m MODEL] [-k API_KEY] [-v]
Required Arguments:
-t, --type TYPE File type to process (pdf, docx, pptx, html)
-s, --source SOURCE Source file or directory path
-o, --output OUTPUT Output directory path
Optional Arguments:
-h, --help Show help message and exit
-e, --extractor TYPE Extraction method:
- page_as_image: Convert pages to images (default)
- text_and_images: Extract text and images separately
Note: HTML only supports page_as_image
-m, --model MODEL Vision model for image description:
- gpt4: GPT-4 Vision (default)
- claude: Claude Vision
- llama: Local Llama model
-k, --api-key KEY API key (required for GPT-4 and Claude)
-v, --verbose Enable verbose logging
-p, --prompt TEXT Custom prompt for image description
describe-image [-h] -s SOURCE [-m MODEL] [-k API_KEY] [-v] [-p PROMPT]
Required Arguments:
-s, --source SOURCE Path to the image file to describe
Optional Arguments:
-h, --help Show help message and exit
-m, --model MODEL Model to use for description:
- gpt4: GPT-4 Vision (default)
- claude: Claude Vision
- llama: Local Llama model
-k, --api-key KEY API key (required for GPT-4 and Claude)
-v, --verbose Enable verbose logging
-p, --prompt TEXT Custom prompt for image description
Note: For backward compatibility, you can also use -i/--image instead of -s/--source.
The -u/--use-case parameter is deprecated. Please use -m/--model instead.
# Basic usage with defaults (page_as_image method, GPT-4 Vision)
file-extract -t pdf -s document.pdf -o output_dir
file-extract -t html -s webpage.html -o output_dir # HTML always uses page_as_image
# Specify extraction method (not applicable for HTML)
file-extract -t docx -s document.docx -o output_dir -e text_and_images
# Use local Llama model for image description
file-extract -t pptx -s slides.pptx -o output_dir -m llama
# Process all PDFs in a directory with verbose logging
file-extract -t pdf -s input_dir -o output_dir -v
# Use custom OpenAI API key
file-extract -t pdf -s document.pdf -o output_dir -k "your-api-key"
# Use custom prompt for image descriptions
file-extract -t pdf -s document.pdf -o output_dir -p "Focus on text content and layout"
# Basic usage with defaults (GPT-4 Vision)
describe-image -s photo.jpg
describe-image -i photo.jpg # Legacy parameter, still supported
# Using specific models
describe-image -s photo.jpg -m claude -k your-anthropic-key
describe-image -s photo.jpg -m llama
describe-image -i photo.jpg -m gpt4 # Legacy parameter style
# Using custom prompt
describe-image -s photo.jpg -p "List the main colors and their proportions"
# Customize token limit
describe-image -s photo.jpg -t 500
# Enable verbose logging
describe-image -s photo.jpg -v
# Use custom OpenAI API key
describe-image -s photo.jpg -k "your-api-key"
# Combine options
describe-image -s photo.jpg -m llama -p "Describe the lighting and shadows" -v
PyVisionAI supports custom prompts for both file extraction and image description. Custom prompts allow you to control how content is extracted and described.
-
CLI Usage
# File extraction with custom prompt file-extract -t pdf -s document.pdf -o output_dir -p "Extract all text verbatim and describe any diagrams or images in detail" # Image description with custom prompt describe-image -i image.jpg -p "List the main colors and describe the layout of elements"
-
Library Usage
# File extraction with custom prompt extractor = create_extractor( "pdf", extractor_type="page_as_image", prompt="Extract all text exactly as it appears and provide detailed descriptions of any charts or diagrams" ) output_path = extractor.extract("input.pdf", "output_dir") # Image description with custom prompt description = describe_image_openai( "image.jpg", prompt="Focus on spatial relationships between objects and any text content" )
-
Environment Variable
# Set default prompt via environment variable export FILE_EXTRACTOR_PROMPT="Extract text and describe visual elements with emphasis on layout"
-
For Page-as-Image Method
- Include instructions for both text extraction and visual description since the entire page is processed as an image
- Example: "Extract the exact text as it appears on the page and describe any images, diagrams, or visual elements in detail"
-
For Text-and-Images Method
- Focus only on image description since text is extracted separately
- The model only sees the images, not the text content
- Example: "Describe the visual content, focusing on what the image represents and any visual elements it contains"
-
For Image Description
- Be specific about what aspects to focus on
- Example: "Describe the main elements, their arrangement, and any text visible in the image"
Note: For page-as-image method, prompts must include both text extraction and visual description instructions as the entire page is processed as an image. For text-and-images method, prompts should focus solely on image description as text is handled separately.
We welcome contributions to PyVisionAI! Whether you're fixing bugs, improving documentation, or proposing new features, your help is appreciated.
Please read our Contributing Guidelines for detailed information on:
- Setting up your development environment
- Code style and standards
- Testing requirements
- Pull request process
- Documentation guidelines
- Fork and clone the repository
- Install development dependencies:
pip install poetry poetry install
- Install pre-commit hooks:
poetry run pre-commit install
- Make your changes
- Run tests:
poetry run pytest
- Submit a pull request
For more detailed instructions, see CONTRIBUTING.md.