Code for Deep learning based cross-view image matching for UAV geo-localization.
- Clone the repo
git clone https://github.com/LuoXubo/UAV-geoloc
- Install requirements
conda env create -f environment.yml
conda activate uavgeoloc
- Download the UAVDT dataset and extract it to
data/UAV-benchmark-M/
. - Arrange the dataset as follows:
UAV-geoloc
├── datasets
│ ├── query
│ │ ├── 1
│ │ │ ├── 000001.jpg
│ │ │ ├── ...
│ ├── database
│ │ ├── 1
│ │ │ ├── 000001.jpg
│ │ │ ├── ...
Test the model with the following commands:
- Coarse localization
cd Coarse
python3 test.py \
--name='final_three_view_long_share_d0.75_256_s1_google_LPN4_lr0.001' \
--batchsize=128 \
--gpu_ids='0'
python demo_all.py
cd Refine
python dfm_selected_top1.py
If you find this work useful, please consider citing the following paper:
@INPROCEEDINGS{10137193,
author={Luo, Xubo and Tian, Yaolin and Wan, Xue and Xu, Jingzhong and Ke, Tao},
booktitle={2022 International Conference on Service Robotics (ICoSR)},
title={Deep learning based cross-view image matching for UAV geo-localization},
year={2022},
volume={},
number={},
pages={102-106},
keywords={Location awareness;Deep learning;Satellites;Service robots;Image matching;Refining;Lighting;deep learning;image matching;geo-localization;autonomous drone navigation},
doi={10.1109/ICoSR57188.2022.00028}}
This repo is built upon the LPN and DFM. We thank the authors for sharing their code.