Working with the Nvidia Xavier AGX
git clone --recursive --depth=1 https://github.com/dusty-nv/jetson-inference
cd jetson-inference
docker/run.sh
# (press Ctrl+D to exit the container)
docker/run.sh --volume /home/pit/Pictures:/jetson-inference/build/aarch64/bin/images/test
docker/run.sh --volume /home/pit/Pictures:/jetson-inference/build/aarch64/bin/images/test --volume /home/pit/jetson-inference/build/aarch64/bin/networks:/jetson-inference/build/aarch64/bin/networks
The imagenet.cpp
/ imagenet.py
samples that we used previously can also be used for realtime camera streaming. The types of supported cameras include:
- MIPI CSI cameras (
csi://0
) - V4L2 cameras (
/dev/video0
) - RTP/RTSP streams (
rtsp://username:password@ip:port
)
For more information about video streams and protocols, please see the Camera Streaming and Multimedia page.
Below are some typical scenarios for launching the program on a camera feed (run --help
for more options):
$ ./imagenet csi://0 # MIPI CSI camera
$ ./imagenet /dev/video0 # V4L2 camera
$ ./imagenet /dev/video0 output.mp4 # save to video file
$ ./imagenet.py csi://0 # MIPI CSI camera
$ ./imagenet.py /dev/video0 # V4L2 camera
$ ./imagenet.py /dev/video0 output.mp4 # save to video file
Dustin from Nvidia has his prebuild docker containers on [DockerHub](https://hub.docker.com/r/dustynv/jetson-inference/tags): https://hub.docker.com/r/dustynv/jetson-inference/tags
Alternatively, you can [Build the Project ](building-repo-2.md) from source.
Dustin has more details on his [Gihub](https://github.com/dusty-nv/jetson-inference/blob/master/docs/aux-docker.md).
# Modelle wiederherstellen
```$ cd jetson-inference/data/networks/
$ wget https://raw.githubusercontent.com/BVLC/caffe/master/models/bvlc_googlenet/deploy.prototxt -O googlenet.prototxt
$ wget http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel -O bvlc_googlenet.caffemodel
Then check “ls -ll” again - your bvlc_googlenet.caffemodel should be 53533754 bytes and googlenet.prototxt should be 35861 bytes. If sizes match, try re-running imagenet-console again.
To re-download all the models, clear your build directory and re-run cmake:
$ cd jetson-inference
$ rm -r -f build
$ mkdir build
$ cd build
$ cmake ../
$ make
$ sudo make install
Output of i2c devices on bus #8
pit@pit-desktop:~$ i2cdetect -y -r 8
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- 76 --
Char value of bus 8
, I2C-Address 0x76
in register 0x0d
pit@pit-desktop:~$ sudo i2cget 8 0x76 0xd0
WARNING! This program can confuse your I2C bus, cause data loss and worse!
I will read from device file /dev/i2c-8, chip address 0x76, data address
0xd0, using read byte data.
Continue? [Y/n] y
0x58