Skip to content

InGM-LIO: A Multiscale Gaussian Model-Based LiDAR-Inertial Odometry Using Invariant Kalman Filtering.

License

Notifications You must be signed in to change notification settings

Liansheng-Wang/InGM-LIO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

InGM-LIO: A Multiscale Gaussian Model-Based LiDAR-Inertial Odometry Using Invariant Kalman Filtering

This repository contains the source code for our ICRA2025 paper "InGM-LIO: A Multiscale Gaussian Model-Based LiDAR-Inertial Odometry Using Invariant Kalman Filtering". Our system combines a multiscale Gaussian model with tightly coupled LiDAR and IMU data using invariant Kalman filtering for accurate, efficient, and robust odometry.

The code will release soon upen the paper be accepted.

Data Sequence Correspondence

In this project, we tested the following public datasets:

The following table shows the correspondence between the sequences used in the experiments and the results reported in the paper:

Dataset Sequence Abbreviation Full Name Duration (s) Distance (km) LiDAR Type
M2DGR M.s1 street_01 1028 0.75 Velodyne VLP-32C
M2DGR M.s2 street_02 1227 1.48 Velodyne VLP-32C
M2DGR M.s3 street_03 354 0.42 Velodyne VLP-32C
M2DGR M.s4 street_04 858 0.84 Velodyne VLP-32C
M2DGR M.s5 street_05 469 0.42 Velodyne VLP-32C
M2DGR M.s6 street_06 494 0.48 Velodyne VLP-32C
M2DGR M.s8 street_08 491 0.34 Velodyne VLP-32C
M2DGR M.h1 hall_01 351 0.21 Velodyne VLP-32C
M2DGR M.h2 hall_05 402 0.29 Velodyne VLP-32C
NCLT N.01 2012-01-15 6646 7.58 Velodyne HDL-32E
NCLT N.02 2012-04-29 2599 3.17 Velodyne HDL-32E
NCLT N.03 2012-05-11 5016 6.12 Velodyne HDL-32E
NCLT N.04 2012-06-15 3310 4.09 Velodyne HDL-32E
NCLT N.05 2013-01-10 1025 1.14 Velodyne HDL-32E
AVIA A.c2 hkust_campus_seq_02 323 0.35 Livox AVIA
AVIA A.mb hku_main_building 1170 1.05 Livox AVIA
AVIA A.p1 hku_park_01 351 0.40 Livox AVIA
Ours O.c1 campus 1111 1.72 Hesai XT16, Livox Mid-360
Ours O.c2 campus_under_garage 1227 1.23 Hesai XT16, Livox Mid-360
Ours O.lb lab_building 472 0.32 Livox Mid-360

ECUST-Dataset

The data collection platform is a four-wheel independent steering robot equipped with a Hesai-XT16 LiDAR, three Livox-360 semi-solid-state LiDARs, an RGB camera, and an Xsens MTi-300 IMU. The data was collected along a trajectory that starts and ends at the same point.

Dataset

Dataset Download

At present, we have uploaded the dataset to Baidu Cloud, and other ways of obtaining it will be done soon.

LINK: https://pan.baidu.com/s/18TVygoaLQTda5qpqXs415g?pwd=i9m9
Extracted code: i9m9

Data format

Each of our sequences is released as a simple rosbag file.

campus.bag

rosbag info campus.bag
-------------------------------------------------------
path:        campus.bag
version:     2.0
duration:    18:31s (1111s)
start:       Nov 01 2023 15:30:33.15 (1698823833.15)
end:         Nov 01 2023 15:49:04.62 (1698824944.62)
size:        71.8 GB
messages:    1222589
compression: none [44480/44480 chunks]
types:       livox_ros_driver2/CustomMsg [e4d6829bdfe657cb6c21a746c86b21a6]
             sensor_msgs/Image           [060021388200f6f0f447d0fcd9c64743]
             sensor_msgs/Imu             [6a62c6daae103f4ff57a132d6f95cec2]
             sensor_msgs/PointCloud2     [1158d486dd51d683ce2f1be655c3c181]
topics:      /camera/color/image_raw       33349 msgs    : sensor_msgs/Image          
             /hesai_front/pandar           11115 msgs    : sensor_msgs/PointCloud2    
             /imu/data                    444580 msgs    : sensor_msgs/Imu            
             /livox/imu_192_168_1_101     222284 msgs    : sensor_msgs/Imu            
             /livox/imu_192_168_1_150     222284 msgs    : sensor_msgs/Imu            
             /livox/imu_192_168_1_174     222284 msgs    : sensor_msgs/Imu            
             /livox/lidar_192_168_1_101    22230 msgs    : livox_ros_driver2/CustomMsg
             /livox/lidar_192_168_1_150    22229 msgs    : livox_ros_driver2/CustomMsg

campus_under_garage.bag

rosbag info campus_under_garage.bag 
-------------------------------------------------------
path:        campus_under_garage.bag
version:     2.0
duration:    20:27s (1227s)
start:       Nov 01 2023 15:49:56.82 (1698824996.82)
end:         Nov 01 2023 16:10:24.53 (1698826224.53)
size:        79.5 GB
messages:    1350383
compression: none [49135/49135 chunks]
types:       livox_ros_driver2/CustomMsg [e4d6829bdfe657cb6c21a746c86b21a6]
             sensor_msgs/Image           [060021388200f6f0f447d0fcd9c64743]
             sensor_msgs/Imu             [6a62c6daae103f4ff57a132d6f95cec2]
             sensor_msgs/PointCloud2     [1158d486dd51d683ce2f1be655c3c181]
topics:      /camera/color/image_raw       36836 msgs    : sensor_msgs/Image          
             /hesai_front/pandar           12279 msgs    : sensor_msgs/PointCloud2    
             /imu/data                    491073 msgs    : sensor_msgs/Imu            
             /livox/imu_192_168_1_101     245531 msgs    : sensor_msgs/Imu            
             /livox/imu_192_168_1_150     245530 msgs    : sensor_msgs/Imu            
             /livox/imu_192_168_1_174     245529 msgs    : sensor_msgs/Imu            
             /livox/lidar_192_168_1_101    24554 msgs    : livox_ros_driver2/CustomMsg
             /livox/lidar_192_168_1_150    24555 msgs    : livox_ros_driver2/CustomMsg
             /livox/lidar_192_168_1_174    24496 msgs    : livox_ros_driver2/CustomMsg

lab_building.bag

path:        lab_building.bag
version:     2.0
duration:    7:52s (472s)
start:       Jan 29 2024 11:03:26.71 (1706497406.71)
end:         Jan 29 2024 11:11:18.87 (1706497878.87)
size:        1.7 GB
messages:    103355
compression: none [1868/1868 chunks]
types:       livox_ros_driver2/CustomMsg [e4d6829bdfe657cb6c21a746c86b21a6]
             sensor_msgs/Imu             [6a62c6daae103f4ff57a132d6f95cec2]
topics:      /livox/imu_192_168_1_101     94428 msgs    : sensor_msgs/Imu            
             /livox/lidar_192_168_1_101    8927 msgs    : livox_ros_driver2/CustomMsg

Details of Comparative Experiments

All the other open-source projects we tested, along with specific parameters and configurations, are available in the repository comp-exp. All projects can be successfully compiled on an Ubuntu 20.04, ROS1, X64 system. Those interested can check the details there.

comp-exp: https://github.com/Liansheng-Wang/comp-exp.git

Thanks

I would like to express my sincere gratitude to Chengwei Zhao, Dongjiao He, Shuai Liang and Chi Yan for their invaluable guidance and assistance on this paper.

Paper Submission and Acceptance Progress

  • Initial Submission: September 15, 2024 - Paper submitted to ICRA 2025.
  • Under review: October 1st, 2024.

Ongoing Plan

  • Validation of more publicly available datasets
  • Update this project to be compatible with ROS2 Humble.

About

InGM-LIO: A Multiscale Gaussian Model-Based LiDAR-Inertial Odometry Using Invariant Kalman Filtering.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published