This is a full process to deploy yolov5 on rv1126,Using atk RV1126 PCB Board and Demo
(or rv1109,similar with rv1106 and rv1103).
In this project,the sequence is:
1.Train model
2.Detect pt model
3.Export onnx model
4.Convert onnx to rknn
5.Link board using rknn detect object
6.Accuracy analysis
7.Compile model
8.Deploy model
9.Helpful function in real-world situations
Development board information
Product model:ATK-DLRV1126 SOC: RockChip RV1126 Storage: 2GB DDR4L, 8GB EMMC
Camera: ATK-MCIMX335 Master control:Sony IMX335 Pixel:504W
In rk_yolov5_master
python train.py --img 640 --epoch 500 --weights yolov5s.pt --data data/my.yaml
In rk_yolov5_master
python detect.py --weights your_trained_model.pt --source your_img.jpg
In rk_yolov5_master
# for detection model
python export.py --rknpu --weight yolov5s.pt
# for segmentation model
python export.py --rknpu --weight yolov5s-seg.pt
in rkzoo_example_yolov5
Usage:
cd python
python convert.py <onnx_model> <TARGET_PLATFORM> <dtype(optional)> <output_rknn_path(optional)>
# such as:
python convert.py ../model/yolov5s_relu.onnx rk3588
# output model will be saved as ../model/yolov5.rknn
Description:
<onnx_model>
: Specify ONNX model path.<TARGET_PLATFORM>
: Specify NPU platform name. Support Platform refer here.<dtype>(optional)
: Specify asi8
orfp
.i8
for doing quantization,fp
for no quantization. Default isi8
.<output_rknn_path>(optional)
: Specify save path for the RKNN model, default save in the same directory as ONNX model with nameyolov5.rknn
in rkzoo_example_yolov5
Usage:
cd python
# Inference with PyTorch model or ONNX model
python yolov5.py --model_path <pt_model/onnx_model> --img_show
# Inference with RKNN model
python yolov5.py --model_path <rknn_model> --target <TARGET_PLATFORM> --img_show
Description:
<TARGET_PLATFORM>
: Specify NPU platform name. Such as 'rk3588'.<pt_model / onnx_model / rknn_model>
: specified as the model path.
In accuracy_analysis
python my_normal_quantizition.py
The accuracy log's meaning in README.md,you should watching it.
in rkzoo_example_yolov5
tip:Need full rknn_model_zoo package.Please read https://github.com/airockchip/rknn_model_zoo/blob/main/examples/yolov5/README.md
usage
# go back to the rknn_model_zoo root directory
cd ../../
# if GCC_COMPILER not found while building, please set GCC_COMPILER path
(optional)export GCC_COMPILER=<GCC_COMPILER_PATH>
./build-linux.sh -t <TARGET_PLATFORM> -a <ARCH> -d yolov5
# such as
./build-linux.sh -t rk3588 -a aarch64 -d yolov5
# such as
./build-linux.sh -t rv1106 -a armhf -d yolov5
Description:
-
<GCC_COMPILER_PATH>
: Specified as GCC_COMPILER path.-
For RV1106, RV1103, GCC_COMPILER version is
arm-rockchip830-linux-uclibcgnueabihf
export GCC_COMPILER=~/opt/arm-rockchip830-linux-uclibcgnueabihf/bin/arm-rockchip830-linux-uclibcgnueabihf
-
-
<TARGET_PLATFORM>
: Specify NPU platform name. Support Platform refer here. -
<ARCH>
: Specify device system architecture. To query device architecture, refer to the following command:# Query architecture. For Linux, ['aarch64' or 'armhf'] should shown in log. adb shell cat /proc/version
result folder:rknn_yolov5_demo
tip:Need full rknn_model_zoo package.Please read https://github.com/airockchip/rknn_model_zoo/blob/main/examples/yolov5/README.md
- If device connected via USB port, push demo files to devices:
adb push install/<TARGET_PLATFORM>_linux_<ARCH>/rknn_yolov5_demo/ /userdata/
- For other boards, use
scp
or other approaches to push all files underinstall/<TARGET_PLATFORM>_linux_<ARCH>/rknn_yolov5_demo/
touserdata
.
./rknn_yolov5_demo model/yolov5.rknn model/bus.jpg
After running, the result was saved as out.png
. To check the result on host PC, pull back result referring to the following command:
adb pull /userdata/rknn_yolov5_demo/out.png
There are some usful packages to use:
myvideo for record video,video format can be nv12,h264,h264 and mjpg
yolov5_jpeg for take a picture and detect it.Use ispserver module can avoid taking iqfiles in starting parameter.
camera_mode for no more PC to linked board,just press the button,you can taking pictures.This will be usful to taking picture for training.
cow1_out.jpg
cow2_out.jpg
cow3_out.jpg