Skip to content

LCAS/MATLAB_yolov8_human_labeling

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv8 Human Labeling in MATLAB using Ground Truth Labeler

This guide explains how to integrate a pretrained YOLOv8 model with MATLAB's Ground Truth Labeler App to automatically generate human bounding box annotations and manually assign IDs using attributes.


Requirements

  • MATLAB R2023b or later
  • Toolboxes:
    • Computer Vision Toolbox
    • Deep Learning Toolbox
    • Deep Learning Toolbox Converter for ONNX Model Format

Steps to use YOLOv8 with Ground Truth Labeler in MATLAB

1. Download the repository

Download the YOLOv8 model integration from here:


2. Import the YOLO method

In MATLAB, following this video, import the YOLO method.


3. Start auto labelling

The same as the previous method.


4. Create a label

  • Add a new rectangle ROI label named "human".

5. Add an ID attribute

  • Click the checkbox next to the label "human" in the label list.
  • Click Attribute → Add a new attribute called ID.
  • Set the Type to "List" and provide values like 1, 2, 3, ....

6. Import the custom algorithm

  • Go to Select Algorithm → click Import Algorithm → choose yolov8_label.m.

7. Select the custom algorithm

  • Choose "YOLOv8 Human Labeler" from the automation list.

8. Run the automation

  • Click Automate → then click Run. YOLOv8 will automatically draw bounding boxes for detected humans.

9. Assign IDs to detections

For each frame:

  • Click on each bounding box.
  • In the right panel, assign the correct ID (e.g., 1 for person1, 2 for person2, etc.).

10. Accept the results

  • Once satisfied, click Accept to keep the generated labels.

About

YOLOv8 Human Labeling in MATLAB using Ground Truth Labeler

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 99.6%
  • Python 0.4%