-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
735a6d3
commit 56c3aee
Showing
1 changed file
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
import numpy as np | ||
from sacred import Experiment | ||
from sacred.commands import print_config, save_config | ||
from sacred.observers import FileStorageObserver | ||
from torch.nn.utils import clip_grad_norm_ | ||
from torch.optim.lr_scheduler import StepLR | ||
from torch.utils.data import DataLoader | ||
from torch.utils.tensorboard import SummaryWriter | ||
import torch | ||
from tqdm import tqdm | ||
from model import * | ||
from evaluate import * | ||
import pickle | ||
import shutil | ||
import os | ||
|
||
ex = Experiment('evaluate') | ||
log = True | ||
|
||
@ex.config | ||
def config(): | ||
spec = 'Mel' | ||
attention_mode = 'onset' | ||
mode = 'imagewise' | ||
|
||
weight_file = None | ||
output_folder = 'results' | ||
inference=True | ||
LSTM = True | ||
onset = True | ||
device = 'cuda:0' | ||
refresh=False | ||
|
||
cat_feat = False | ||
Simple_attention=True | ||
|
||
logdir = os.path.join('results', weight_file) | ||
|
||
|
||
@ex.automain | ||
def train(spec, inference, refresh, device, logdir, weight_file, mode, LSTM, onset, Simple_attention, cat_feat): | ||
|
||
if inference: | ||
inference_state = 'infer' | ||
else: | ||
inference_state = 'no_infer' | ||
|
||
print_config(ex.current_run) | ||
validation_dataset = MAPS(groups=['ENSTDkAm', 'ENSTDkCl'], sequence_length=None, device=device, refresh=refresh) | ||
|
||
weight_path = os.path.join('trained_weights', weight_file) | ||
|
||
model_type = os.path.basename(weight_path).split('-')[0] | ||
attention_mode = os.path.basename(weight_path).split('-')[3] | ||
|
||
if attention_mode=='feat': | ||
attention_mode='activation' # change the flag to match the weight name | ||
|
||
try: | ||
modifier = os.path.basename(weight_path).split('-')[4] | ||
if modifier=='no_biLSTM': | ||
LSTM=False | ||
elif modifier=='no_onset': | ||
onset=False | ||
except: | ||
modifier='Null' | ||
|
||
if model_type=='Original': | ||
model = OnsetsAndFrames(N_BINS, MAX_MIDI - MIN_MIDI + 1, log=log, mode=mode, | ||
spec=spec, LSTM=LSTM, onset_stack=onset) | ||
elif model_type=='Attention': | ||
print('run me') | ||
model = OnsetsAndFrames_with_fast_local_attn(N_BINS, MAX_MIDI - MIN_MIDI + 1, | ||
log=log, mode=mode, spec=spec, | ||
LSTM=LSTM, onset_stack=onset, | ||
attention_mode=attention_mode) | ||
elif model_type=='Simple': | ||
model = SimpleModel(N_BINS, MAX_MIDI - MIN_MIDI + 1, log=log, mode=mode, spec=spec, | ||
device=device, w_size=int(modifier[2:]), attention=Simple_attention, layers=1, | ||
cat_feat=False, onset=False) | ||
model.to(device) | ||
model.load_my_state_dict(torch.load(weight_path+'.pt')) | ||
|
||
|
||
|
||
with torch.no_grad(): | ||
model.eval() | ||
metrics = evaluate_wo_velocity(tqdm(validation_dataset), model, reconstruction=False, | ||
save_path=os.path.join(logdir,f'./MIDI_results-{inference_state}-{modifier}'), | ||
onset=inference) | ||
|
||
for key, values in metrics.items(): | ||
if key.startswith('metric/'): | ||
_, category, name = key.split('/') | ||
print(f'{category:>32} {name:25}: {np.mean(values)*100:.3f} ± {np.std(values)*100:.3f}') | ||
export_path = os.path.join(logdir, f'result_dict_{inference_state}-{modifier}') | ||
pickle.dump(metrics, open(export_path, 'wb')) |