-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dbefda7
commit 2197521
Showing
1 changed file
with
190 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
import os | ||
|
||
from datetime import datetime | ||
import pickle | ||
|
||
import numpy as np | ||
from sacred import Experiment | ||
from sacred.commands import print_config, save_config | ||
from sacred.observers import FileStorageObserver | ||
from torch.optim.lr_scheduler import StepLR, CyclicLR | ||
from torch.utils.data import DataLoader, ConcatDataset | ||
from tqdm import tqdm | ||
|
||
from model import * | ||
ex = Experiment('train_original') | ||
|
||
# parameters for the network | ||
ds_ksize, ds_stride = (2,2),(2,2) | ||
mode = 'imagewise' | ||
sparsity = 1 | ||
output_channel = 2 | ||
logging_freq = 100 | ||
saving_freq = 200 | ||
|
||
|
||
@ex.config | ||
def config(): | ||
root = 'runs' | ||
# logdir = f'runs_AE/test' + '-' + datetime.now().strftime('%y%m%d-%H%M%S') | ||
# Choosing GPU to use | ||
# GPU = '0' | ||
# os.environ['CUDA_VISIBLE_DEVICES']=str(GPU) | ||
onset_stack=True | ||
device = 'cuda:0' | ||
log = True | ||
w_size = 31 | ||
spec = 'Mel' | ||
resume_iteration = None | ||
train_on = 'Wind' | ||
n_heads=4 | ||
position=True | ||
iteration = 10 | ||
VAT_start = 0 | ||
alpha = 1 | ||
VAT=True | ||
XI= 1e-6 | ||
eps=2 | ||
small = False | ||
KL_Div = False | ||
reconstruction = False | ||
|
||
|
||
batch_size = 8 | ||
train_batch_size = 1 | ||
sequence_length = 327680 | ||
if torch.cuda.is_available() and torch.cuda.get_device_properties(torch.cuda.current_device()).total_memory < 10e9: | ||
batch_size //= 2 | ||
sequence_length //= 2 | ||
print(f'Reducing batch size to {batch_size} and sequence_length to {sequence_length} to save memory') | ||
|
||
epoches = 20000 | ||
step_size_up = 100 | ||
max_lr = 1e-4 | ||
learning_rate = 1e-3 | ||
# base_lr = learning_rate | ||
|
||
learning_rate_decay_steps = 1000 | ||
learning_rate_decay_rate = 0.98 | ||
|
||
leave_one_out = None | ||
|
||
clip_gradient_norm = 3 | ||
|
||
validation_length = sequence_length | ||
refresh = False | ||
|
||
logdir = f'{root}/Unet-recons={reconstruction}-XI={XI}-eps={eps}-alpha={alpha}-train_on=small_{small}_{train_on}-w_size={w_size}-n_heads={n_heads}-lr={learning_rate}-'+ datetime.now().strftime('%y%m%d-%H%M%S') | ||
|
||
ex.observers.append(FileStorageObserver.create(logdir)) # saving source code | ||
|
||
@ex.automain | ||
def train(spec, resume_iteration, train_on, batch_size, sequence_length,w_size, n_heads, small, train_batch_size, | ||
learning_rate, learning_rate_decay_steps, learning_rate_decay_rate, leave_one_out, position, alpha, KL_Div, | ||
clip_gradient_norm, validation_length, refresh, device, epoches, logdir, log, iteration, VAT_start, VAT, XI, eps, | ||
reconstruction): | ||
print_config(ex.current_run) | ||
|
||
|
||
supervised_set, unsupervised_set, validation_dataset, full_validation = prepare_VAT_dataset( | ||
sequence_length=sequence_length, | ||
validation_length=sequence_length, | ||
refresh=refresh, | ||
device=device, | ||
small=small, | ||
supersmall=True, | ||
dataset=train_on) | ||
|
||
# MAPS_supervised_set, MAPS_unsupervised_set, MAPS_validation_dataset, _ = prepare_VAT_dataset( | ||
# sequence_length=sequence_length, | ||
# validation_length=sequence_length, | ||
# refresh=False, | ||
# device=device, | ||
# small=True, | ||
# supersmall=True, | ||
# dataset='MAPS') | ||
|
||
# supervised_set = ConcatDataset([supervised_set, MAPS_supervised_set]) | ||
# unsupervised_set = ConcatDataset([unsupervised_set, MAPS_unsupervised_set]) | ||
|
||
|
||
if VAT: | ||
unsupervised_loader = DataLoader(unsupervised_set, batch_size, shuffle=True, drop_last=True) | ||
|
||
# supervised_set, unsupervised_set = torch.utils.data.random_split(dataset, [100, 39], | ||
# generator=torch.Generator().manual_seed(42)) | ||
if len(validation_dataset)>4: | ||
val_batch_size=4 | ||
else: | ||
val_batch_size = len(validation_dataset) | ||
supervised_loader = DataLoader(supervised_set, train_batch_size, shuffle=True, drop_last=True) | ||
valloader = DataLoader(validation_dataset, val_batch_size, shuffle=False, drop_last=True) | ||
batch_visualize = next(iter(valloader)) # Getting one fixed batch for visualization | ||
|
||
ds_ksize, ds_stride = (2,2),(2,2) | ||
if resume_iteration is None: | ||
model = UNet(ds_ksize,ds_stride, log=log, reconstruction=reconstruction, | ||
mode=mode, spec=spec, device=device, XI=XI, eps=eps) | ||
model.to(device) | ||
optimizer = torch.optim.Adam(model.parameters(), learning_rate) | ||
resume_iteration = 0 | ||
else: # Loading checkpoints and continue training | ||
trained_dir='trained_MAPS' # Assume that the checkpoint is in this folder | ||
model_path = os.path.join(trained_dir, f'{resume_iteration}.pt') | ||
model = torch.load(model_path) | ||
optimizer = torch.optim.Adam(model.parameters(), learning_rate) | ||
optimizer.load_state_dict(torch.load(os.path.join(trained_dir, 'last-optimizer-state.pt'))) | ||
|
||
summary(model) | ||
# scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=base_lr, max_lr=max_lr, step_size_up=step_size_up,cycle_momentum=False) | ||
scheduler = StepLR(optimizer, step_size=learning_rate_decay_steps, gamma=learning_rate_decay_rate) | ||
|
||
# loop = tqdm(range(resume_iteration + 1, iterations + 1)) | ||
|
||
print(f'supervised_loader') | ||
|
||
for ep in range(1, epoches+1): | ||
if VAT==True: | ||
predictions, losses, optimizer = train_VAT_model(model, iteration, ep, supervised_loader, unsupervised_loader, | ||
optimizer, scheduler, clip_gradient_norm, alpha, VAT, VAT_start) | ||
else: | ||
predictions, losses, optimizer = train_VAT_model(model, iteration, ep, supervised_loader, None, | ||
optimizer, scheduler, clip_gradient_norm, alpha, VAT, VAT_start) | ||
loss = sum(losses.values()) | ||
|
||
# Logging results to tensorboard | ||
if ep == 1: | ||
writer = SummaryWriter(logdir) # create tensorboard logger | ||
if ep < VAT_start or VAT==False: | ||
tensorboard_log(batch_visualize, model, validation_dataset, supervised_loader, | ||
ep, logging_freq, saving_freq, n_heads, logdir, w_size, writer, | ||
False, VAT_start, reconstruction) | ||
else: | ||
tensorboard_log(batch_visualize, model, validation_dataset, supervised_loader, | ||
ep, logging_freq, saving_freq, n_heads, logdir, w_size, writer, | ||
True, VAT_start, reconstruction) | ||
|
||
# Saving model | ||
if (ep)%saving_freq == 0: | ||
torch.save(model.state_dict(), os.path.join(logdir, f'model-{ep}.pt')) | ||
torch.save(optimizer.state_dict(), os.path.join(logdir, 'last-optimizer-state.pt')) | ||
for key, value in {**losses}.items(): | ||
writer.add_scalar(key, value.item(), global_step=ep) | ||
|
||
|
||
# Evaluating model performance on the full MAPS songs in the test split | ||
print('Training finished, now evaluating on the MAPS test split (full songs)') | ||
with torch.no_grad(): | ||
model = model.eval() | ||
metrics = evaluate_wo_velocity(tqdm(full_validation), model, reconstruction=False, | ||
save_path=os.path.join(logdir,'./MIDI_results')) | ||
|
||
for key, values in metrics.items(): | ||
if key.startswith('metric/'): | ||
_, category, name = key.split('/') | ||
print(f'{category:>32} {name:25}: {np.mean(values):.3f} ± {np.std(values):.3f}') | ||
|
||
export_path = os.path.join(logdir, 'result_dict') | ||
pickle.dump(metrics, open(export_path, 'wb')) | ||
|
||
|