Core library for the KappaML project.
This library implements experimental online automated machine learning algorithms for the KappaML project.
from river.tree import HoeffdingTreeClassifier
from river.linear_model import LogisticRegression
from river.metrics import Accuracy
from kappaml_core.meta import MetaClassifier
# Create base models
models = [
    HoeffdingTreeClassifier(weighted=True),
    HoeffdingTreeClassifier(weighted=False),
    LogisticRegression()
]
# Initialize meta-classifier
model = MetaClassifier(
    models=models,
    meta_learner=HoeffdingTreeClassifier(),
    metric=Accuracy(),
    mfe_groups=["general"],
    window_size=200,
    meta_update_frequency=50
)
for x, y in stream:
    # Make prediction
    y_pred = model.predict_one(x)
    # Update the model
    model.learn_one(x, y)from river.linear_model import LinearRegression
from river.tree import HoeffdingTreeRegressor
from river.preprocessing import StandardScaler
from river.metrics import MAPE
from kappaml_core.meta import MetaRegressor
# Create base models
models = [
    LinearRegression(),
    StandardScaler() | LinearRegression(),
    [LinearRegression(l2=l2) for l2 in range(0, 1, 0.1)],
    HoeffdingTreeRegressor()
]
# Initialize meta-regressor
model = MetaRegressor(
    models=models,
    meta_learner=HoeffdingTreeClassifier(),
    metric=MAPE(),
    mfe_groups=["general"],
    window_size=200,
    meta_update_frequency=50
)
for x, y in stream:
    # Make prediction
    y_pred = model.predict_one(x)
    # Update the model
    model.learn_one(x, y)This project has been set up using PyScaffold 4.1.4. For details and usage information on PyScaffold see https://pyscaffold.org/.