Skip to content

Commit

Permalink
Update QuantumEconomicModelingSystem.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Dec 7, 2024
1 parent c7e4784 commit 07437ab
Showing 1 changed file with 46 additions and 3 deletions.
49 changes: 46 additions & 3 deletions src/stabilizer/QuantumEconomicModelingSystem.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,59 @@
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import seaborn as sns

class QuantumEconomicModelingSystem:
def __init__(self):
self.economic_simulation_parameters = {
'target_valuation': 314.159,
'global_economic_integration_depth': 0.95 # 95% integration potential
'global_economic_integration_depth': 0.95, # 95% integration potential
'quantum_factor': 1.618, # Example quantum factor for simulations
'market_trends_data': self._fetch_market_trends()
}

self.model = LinearRegression()

def _fetch_market_trends(self):
# Simulate fetching market trends data
# In a real scenario, this would pull from a live database or API
return pd.DataFrame({
'year': np.arange(2000, 2024),
'market_growth_rate': np.random.uniform(1, 10, 24) # Random growth rates
})

def _calculate_market_potential(self):
# Use machine learning to predict future market potential based on historical data
X = self.economic_simulation_parameters['market_trends_data']['year'].values.reshape(-1, 1)
y = self.economic_simulation_parameters['market_trends_data']['market_growth_rate'].values
self.model.fit(X, y)
future_years = np.array([[2025], [2026], [2027]])
predicted_growth = self.model.predict(future_years)
return predicted_growth

def simulate_global_economic_scenarios(self):
return {
scenarios = {
'economic_integration_scenarios': [
'conservative_adoption',
'moderate_expansion',
'aggressive_global_implementation'
],
'projected_global_market_penetration': self._calculate_market_potential()
}
self._visualize_scenarios(scenarios)
return scenarios

def _visualize_scenarios(self, scenarios):
plt.figure(figsize=(10, 6))
sns.lineplot(x=np.arange(2025, 2028), y=scenarios['projected_global_market_penetration'], marker='o')
plt.title('Projected Global Market Penetration')
plt.xlabel('Year')
plt.ylabel('Market Growth Rate (%)')
plt.xticks(np.arange(2025, 2028))
plt.grid()
plt.show()

# Example usage
quantum_economic_model = QuantumEconomicModelingSystem()
results = quantum_economic_model.simulate_global_economic_scenarios()
print(results)

0 comments on commit 07437ab

Please sign in to comment.