-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update QuantumEconomicModelingSystem.py
- Loading branch information
Showing
1 changed file
with
46 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,16 +1,59 @@ | ||
import numpy as np | ||
import pandas as pd | ||
from sklearn.linear_model import LinearRegression | ||
import matplotlib.pyplot as plt | ||
import seaborn as sns | ||
|
||
class QuantumEconomicModelingSystem: | ||
def __init__(self): | ||
self.economic_simulation_parameters = { | ||
'target_valuation': 314.159, | ||
'global_economic_integration_depth': 0.95 # 95% integration potential | ||
'global_economic_integration_depth': 0.95, # 95% integration potential | ||
'quantum_factor': 1.618, # Example quantum factor for simulations | ||
'market_trends_data': self._fetch_market_trends() | ||
} | ||
|
||
self.model = LinearRegression() | ||
|
||
def _fetch_market_trends(self): | ||
# Simulate fetching market trends data | ||
# In a real scenario, this would pull from a live database or API | ||
return pd.DataFrame({ | ||
'year': np.arange(2000, 2024), | ||
'market_growth_rate': np.random.uniform(1, 10, 24) # Random growth rates | ||
}) | ||
|
||
def _calculate_market_potential(self): | ||
# Use machine learning to predict future market potential based on historical data | ||
X = self.economic_simulation_parameters['market_trends_data']['year'].values.reshape(-1, 1) | ||
y = self.economic_simulation_parameters['market_trends_data']['market_growth_rate'].values | ||
self.model.fit(X, y) | ||
future_years = np.array([[2025], [2026], [2027]]) | ||
predicted_growth = self.model.predict(future_years) | ||
return predicted_growth | ||
|
||
def simulate_global_economic_scenarios(self): | ||
return { | ||
scenarios = { | ||
'economic_integration_scenarios': [ | ||
'conservative_adoption', | ||
'moderate_expansion', | ||
'aggressive_global_implementation' | ||
], | ||
'projected_global_market_penetration': self._calculate_market_potential() | ||
} | ||
self._visualize_scenarios(scenarios) | ||
return scenarios | ||
|
||
def _visualize_scenarios(self, scenarios): | ||
plt.figure(figsize=(10, 6)) | ||
sns.lineplot(x=np.arange(2025, 2028), y=scenarios['projected_global_market_penetration'], marker='o') | ||
plt.title('Projected Global Market Penetration') | ||
plt.xlabel('Year') | ||
plt.ylabel('Market Growth Rate (%)') | ||
plt.xticks(np.arange(2025, 2028)) | ||
plt.grid() | ||
plt.show() | ||
|
||
# Example usage | ||
quantum_economic_model = QuantumEconomicModelingSystem() | ||
results = quantum_economic_model.simulate_global_economic_scenarios() | ||
print(results) |