Skip to content

JulienMeloche/Gaussian_process_smrt_simulation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GP_simulation

This repo contains code for running the GP simulation for sub pixel spatial variability of tundra snow with the SMRT model. The Gaussian processes implementation is done with pymc3.

Snow Radiative transfer model

github.com/smrt-model/smrt

From the paper

"Characterizing Tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals"

Julien Meloche1,2, Alexandre Langlois1,2, Nick Rutter3, Alain Royer 1,2, Josh King4, Branden Walker5

1 Centre d’Applications et de Recherche en Télédétection, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada 2 Centre d’études Nordiques, Université Laval, Québec, G1V 0A6, Canada 3 Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK 4 Environment and Climate Change Canada, Climate Research Division, Toronto, M3H 5T4, Canada 5 Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, N2L 3C5, CanadaT

This paper is currently under review at https://tc.copernicus.org/preprints/tc-2021-156/

library

  • Python 3.7.6
  • Numpy 1.16.4
  • Pandas 0.25.1
  • PyMC3 3.9.3
  • scipy 1.3.1
  • smrt 1.0

How to use

  • Use the GP_mean_simulation_Tb_CV.ipynb notebook to produce the GP simulation and mean simulation. The simulation output are pickle objects. All *.csv files are used as input.

  • The Bias_simulation_mean_GP.ipynb notebook is used to calculate bias and rsme with measurement from the SSMIS satelitte sensor at 37GHz. Simualtion output objects and input. Tbh_measured.obj, Tbv_measured.obj are used as input.

  • For the complete methodoloy, see the complete paper reference above.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published