Skip to content

Commit

Permalink
Adds boosting tracker
Browse files Browse the repository at this point in the history
  • Loading branch information
arijitkar98 committed Jul 9, 2018
1 parent 0025214 commit 980bfba
Show file tree
Hide file tree
Showing 9 changed files with 1,015 additions and 1 deletion.
8 changes: 7 additions & 1 deletion src/ImageTracking.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,19 @@ using Interpolations
using StaticArrays

include("optical_flow.jl")
include("tracker.jl")

export

# main functions
optical_flow,
init_tracker,
update_tracker,

# optical flow algorithms
LK
LK,

#tracking algorithms
TrackerBoosting

end
155 changes: 155 additions & 0 deletions src/boosting_tracker/boosting_tracker.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
mutable struct TrackerBoosting{I <: Int, F <: Float64} <: Tracker
#Initialized
num_classifiers::I
sampler_overlap::F
sampler_search_factor::F
iter_init::I
num_features::I
is_init::Bool

#Uninitialized
haar_tracker_features::HaarTrackerFeatures
sampler::TrackerSampler
model::TrackerModel

TrackerBoosting(num_classifiers::I = 100, sampler_overlap::F = 0.99, sampler_search_factor::F = 1.8, iter_init::I = 20, num_features::I = 1050) where {I <: Int, F <: Float64} = new{I, F}(
num_classifiers, sampler_overlap, sampler_search_factor, iter_init, num_features, false)
end

function init_impl(tracker::TrackerBoosting, image::Array{T, 2}, bounding_box::MVector{4, Int}) where T
int_image = integral_image(Gray.(image))

#Sampling
tracker.sampler = TS_Current_Sample(tracker.sampler_overlap, tracker.sampler_search_factor, :positive)
positive_samples = sample_impl(tracker.sampler, int_image, bounding_box)

tracker.sampler.mode = :negative
negative_samples = sample_impl(tracker.sampler, int_image, bounding_box)

if isempty(positive_samples) || isempty(negative_samples)
throw(ArgumentError("Could not get initial samples."))
end

ROI = tracker.sampler.sampling_ROI

#Compute Haar Features
tracker.haar_tracker_features = HaarTrackerFeatures(tracker.num_features, MVector{2}((bounding_box[3] - bounding_box[1] + 1), (bounding_box[4] - bounding_box[2] + 1)))
generate_features(tracker.haar_tracker_features, tracker.num_features)

extraction(tracker.haar_tracker_features, MVector{length(positive_samples)}(positive_samples))
pos_responses = tracker.haar_tracker_features.responses
extraction(tracker.haar_tracker_features, MVector{length(negative_samples)}(negative_samples))
neg_responses = tracker.haar_tracker_features.responses

#Model
tracker.model = initialize_boosting_model(bounding_box)
state_estimator = TSE_Adaboost(tracker.num_classifiers, tracker.iter_init, tracker.num_features, false, MVector{2}((bounding_box[3] - bounding_box[1] + 1), (bounding_box[4] - bounding_box[2] + 1)), ROI)
tracker.model.state_estimator = state_estimator

#Run model estimation and update for iter_init iterations
for i = 1:tracker.iter_init
#Compute temp features
temp_haar_features = HaarTrackerFeatures(length(positive_samples)+length(negative_samples), MVector{2}((bounding_box[3] - bounding_box[1] + 1), (bounding_box[4] - bounding_box[2] + 1)))
generate_features(temp_haar_features, temp_haar_features.num_features)

#Model estimate
tracker.model.mode = :negative
tracker.model.current_sample = MVector{length(negative_samples)}(negative_samples)
model_estimation(tracker.model, neg_responses, true)

tracker.model.mode = :positive
tracker.model.current_sample = MVector{length(positive_samples)}(positive_samples)
model_estimation(tracker.model, pos_responses, true)

#Model update
model_update(tracker.model)

#Get replaced classifier and change the features
replaced_classifier = tracker.model.state_estimator.replaced_classifier
swapped_classifier = tracker.model.state_estimator.swapped_classifier

for j = 1:length(replaced_classifier)
if replaced_classifier[j] > 0 && swapped_classifier[j] > 0
swap_feature(tracker.haar_tracker_features, replaced_classifier[j], swapped_classifier[j])
swap_feature(tracker.haar_tracker_features, swapped_classifier[j], temp_haar_features.features[j])
end
end
end
end

function update_impl(tracker::TrackerBoosting, image::Array{T, 2}) where T
int_image = integral_image(Gray.(image))

#Get the last location
last_target_state = tracker.model.trajectory[end]
last_target_bounding_box = MVector{4}(round(Int, last_target_state.position[1]), round(Int, last_target_state.position[2]), round(Int, last_target_state.position[1])+last_target_state.height, round(Int, last_target_state.position[2])+last_target_state.width)

#Sampling new frame based on last location
tracker.sampler.mode = :classify
detection_samples = sample_impl(tracker.sampler, int_image, last_target_bounding_box)
ROI = tracker.sampler.sampling_ROI

if isempty(detection_samples)
throw(ArgumentError("Could not get detection samples."))
end

classifiers = get_selected_weak_classifier(tracker.model.state_estimator.boost_classifier)
extractor = tracker.haar_tracker_features
responses = extract_selected(extractor, MVector{length(classifiers)}(classifiers), MVector{length(detection_samples)}(detection_samples))

#Predict new location
tracker.model.mode = :classify
tracker.model.current_sample = MVector{length(detection_samples)}(detection_samples)
tracker.model.state_estimator.current_confidence_map = model_estimation(tracker.model, responses, false)
tracker.model.state_estimator.sample_ROI = ROI

run_state_estimator(tracker.model)
current_state = tracker.model.trajectory[end]
new_bounding_box = MVector{4}(round(Int, current_state.position[1]), round(Int, current_state.position[2]), round(Int, current_state.position[1])+current_state.height, round(Int, current_state.position[2])+current_state.width)

#Sampling new frame based on new location
tracker.sampler.mode = :positive
positive_samples = sample_impl(tracker.sampler, int_image, new_bounding_box)

tracker.sampler.mode = :negative
negative_samples = sample_impl(tracker.sampler, int_image, new_bounding_box)

if isempty(positive_samples) || isempty(negative_samples)
throw(ArgumentError("Could not get initial samples."))
end

#Extract features
extraction(tracker.haar_tracker_features, MVector{length(positive_samples)}(positive_samples))
pos_responses = tracker.haar_tracker_features.responses
extraction(tracker.haar_tracker_features, MVector{length(negative_samples)}(negative_samples))
neg_responses = tracker.haar_tracker_features.responses

#Compute temp features
temp_haar_features = HaarTrackerFeatures(length(positive_samples)+length(negative_samples), MVector{2}((new_bounding_box[3] - new_bounding_box[1] + 1), (new_bounding_box[4] - new_bounding_box[2] + 1)))
generate_features(temp_haar_features, temp_haar_features.num_features)

#Model estimate
tracker.model.mode = :negative
tracker.model.current_sample = MVector{length(negative_samples)}(negative_samples)
model_estimation(tracker.model, neg_responses, true)

tracker.model.mode = :positive
tracker.model.current_sample = MVector{length(positive_samples)}(positive_samples)
model_estimation(tracker.model, pos_responses, true)

#Model update
model_update(tracker.model)

#Get replaced classifier and change the features
replaced_classifier = tracker.model.state_estimator.replaced_classifier
swapped_classifier = tracker.model.state_estimator.swapped_classifier

for j = 1:length(replaced_classifier)
if replaced_classifier[j] > 0 && swapped_classifier[j] > 0
swap_feature(tracker.haar_tracker_features, replaced_classifier[j], swapped_classifier[j])
swap_feature(tracker.haar_tracker_features, swapped_classifier[j], temp_haar_features.features[j])
end
end

return new_bounding_box
end
Loading

0 comments on commit 980bfba

Please sign in to comment.