Skip to content

Commit

Permalink
Merge pull request #4 from alan-turing-institute/compat
Browse files Browse the repository at this point in the history
For a 0.1.2 relese
  • Loading branch information
ablaom authored Jan 28, 2021
2 parents 2e31da2 + 6636de2 commit 325c22d
Show file tree
Hide file tree
Showing 3 changed files with 6 additions and 13 deletions.
11 changes: 4 additions & 7 deletions .github/workflows/CompatHelper.yml
Original file line number Diff line number Diff line change
@@ -1,19 +1,16 @@
name: CompatHelper

on:
schedule:
- cron: '00 00 * * *'

workflow_dispatch:
jobs:
CompatHelper:
runs-on: ubuntu-latest
steps:
- uses: julia-actions/setup-julia@latest
with:
version: 1.3
- name: Pkg.add("CompatHelper")
run: julia -e 'using Pkg; Pkg.add("CompatHelper")'
- name: CompatHelper.main
- name: CompatHelper.main()
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: julia -e 'using CompatHelper; CompatHelper.main(; master_branch = "master")'
COMPATHELPER_PRIV: ${{ secrets.COMPATHELPER_PRIV }} # optional
run: julia -e 'using CompatHelper; CompatHelper.main()'
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,15 +1,15 @@
name = "MLJXGBoostInterface"
uuid = "54119dfa-1dab-4055-a167-80440f4f7a91"
authors = ["Anthony D. Blaom <[email protected]>"]
version = "0.1.1"
version = "0.1.2"

[deps]
MLJModelInterface = "e80e1ace-859a-464e-9ed9-23947d8ae3ea"
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
XGBoost = "009559a3-9522-5dbb-924b-0b6ed2b22bb9"

[compat]
MLJModelInterface = "^0.3.5"
MLJModelInterface = "^0.3.5,^0.4"
Tables = "^1.0.5"
XGBoost = "1.1.1"
julia = "1.3"
Expand Down
4 changes: 0 additions & 4 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@ labels = features * weights;
features = MLJBase.table(features)
fitresultR, cacheR, reportR = MLJBase.fit(plain_regressor, 0, features, labels);
rpred = predict(plain_regressor, fitresultR, features);
info_dict(XGBoostRegressor)

plain_regressor.objective = "gamma"
labels = abs.(labels)
Expand Down Expand Up @@ -53,7 +52,6 @@ ycount = [rand(rng, Poisson(λᵢ)) for λᵢ ∈ λ]

fitresultC, cacheC, reportC = MLJBase.fit(count_regressor, 0, Xtable, ycount);
cpred = predict(count_regressor, fitresultC, Xtable);
info_dict(XGBoostCount)

importances = reportC.feature_importances

Expand Down Expand Up @@ -105,8 +103,6 @@ fitresult, cache, report = MLJBase.fit(plain_classifier, 0,
yhat = predict_mode(plain_classifier, fitresult, selectrows(X, test))
@test Set(MLJBase.classes(yhat[1])) == Set(MLJBase.classes(y[train][1]))

info_dict(XGBoostClassifier)

# serialization:
serializable_fitresult =
MLJBase.save("mymodel", plain_classifier, fitresult)
Expand Down

0 comments on commit 325c22d

Please sign in to comment.