Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/master' into export-serializable
Browse files Browse the repository at this point in the history
  • Loading branch information
ablaom committed Oct 26, 2022
2 parents c165e34 + 212dcf6 commit 02bd898
Showing 1 changed file with 25 additions and 25 deletions.
50 changes: 25 additions & 25 deletions docs/src/list_of_supported_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,31 +25,31 @@ independent assessment.
* *high*: indicates the package is very mature and functionalities are
expected to have been fairly optimiser and tested.

| Package | Models | Maturity | Note
| ------- | ------ | -------- | ----
[BetaML.jl](https://github.com/sylvaticus/BetaML.jl) | LinearPerceptron, KernelPerceptron, Pegasos, DecisionTreeClassifier, DecisionTreeRegressor,RandomForestClassifier, RandomForestRegressor, NeuralNetworkRegressor, MultitargetNeuralNetworkRegressor, NeuralNetworkClassifier, GaussianMixtureRegressor, MultitargetGaussianMixtureRegressor, KMeans, KMedoids, GaussianMixtureClusterer, SimpleImputer, GaussianMixtureImputer, MultitargetGaussianMixtureImputer, RandomForestImputer, GeneralImputer | medium |
[Clustering.jl](https://github.com/JuliaStats/Clustering.jl) | KMeans, KMedoids | high | †
[DecisionTree.jl](https://github.com/bensadeghi/DecisionTree.jl) | DecisionTreeClassifier, DecisionTreeRegressor, AdaBoostStumpClassifier, RandomForestClassifier, RandomForestRegressor | high |
[EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl) | EvoTreeRegressor, EvoTreeClassifier, EvoTreeCount, EvoTreeGaussian | medium | gradient boosting models
[GLM.jl](https://github.com/JuliaStats/GLM.jl) | LinearRegressor, LinearBinaryClassifier, LinearCountRegressor | medium | †
[LIBSVM.jl](https://github.com/mpastell/LIBSVM.jl) | LinearSVC, SVC, NuSVC, NuSVR, EpsilonSVR, OneClassSVM | high | also via ScikitLearn.jl
[LightGBM.jl](https://github.com/IQVIA-ML/LightGBM.jl) | LGBMClassifier, LGBMRegressor | high |
[MLJFlux.jl](https://github.com/FluxML/MLJFlux.jl) | NeuralNetworkRegressor, NeuralNetworkClassifier, MultitargetNeuralNetworkRegressor, ImageClassifier | low |
[MLJLinearModels.jl](https://github.com/JuliaAI/MLJLinearModels.jl) | LinearRegressor, RidgeRegressor, LassoRegressor, ElasticNetRegressor, QuantileRegressor, HuberRegressor, RobustRegressor, LADRegressor, LogisticClassifier, MultinomialClassifier | medium |
[MLJModels.jl](https://github.com/JuliaAI/MLJModels.jl) (built-in) | StaticTransformer, FeatureSelector, FillImputer, UnivariateStandardizer, Standardizer, UnivariateBoxCoxTransformer, OneHotEncoder, ContinuousEncoder, ConstantRegressor, ConstantClassifier, BinaryThreshholdPredictor | medium |
[MLJText.jl](https://github.com/JuliaAI/MLJText.jl) | TfidfTransformer, BM25Transformer, CountTransformer | low |
[MultivariateStats.jl](https://github.com/JuliaStats/MultivariateStats.jl) | LinearRegressor, MultitargetLinearRegressor, RidgeRegressor, MultitargetRidgeRegressor, PCA, KernelPCA, ICA, LDA, BayesianLDA, SubspaceLDA, BayesianSubspaceLDA, FactorAnalysis, PPCA | high |
[NaiveBayes.jl](https://github.com/dfdx/NaiveBayes.jl) | GaussianNBClassifier, MultinomialNBClassifier, HybridNBClassifier | low |
[NearestNeighborModels.jl](https://github.com/JuliaAI/NearestNeighborModels.jl) | KNNClassifier, KNNRegressor, MultitargetKNNClassifier, MultitargetKNNRegressor | high |
[OneRule.jl](https://github.com/roland-KA/OneRule.jl) | OneRuleClassifier | experimental |
[OutlierDetectionNeighbors.jl](https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl) | ABODDetector, COFDetector, DNNDetector, KNNDetector, LOFDetector | medium |
[OutlierDetectionNetworks.jl](https://github.com/OutlierDetectionJL/OutlierDetectionNetworks.jl) | AEDetector, DSADDetector, ESADDetector | medium |
[OutlierDetectionPython.jl](https://github.com/OutlierDetectionJL/OutlierDetectionPython.jl) | ABODDetector, CBLOFDetector, COFDetector, COPODDetector, HBOSDetector, IForestDetector, KNNDetector, LMDDDetector, LOCIDetector, LODADetector, LOFDetector, MCDDetector, OCSVMDetector, PCADetector, RODDetector, SODDetector, SOSDetector | high |
[ParallelKMeans.jl](https://github.com/PyDataBlog/ParallelKMeans.jl) | KMeans | experimental |
[PartialLeastSquaresRegressor.jl](https://github.com/lalvim/PartialLeastSquaresRegressor.jl) | PLSRegressor, KPLSRegressor | experimental |
[ScikitLearn.jl](https://github.com/cstjean/ScikitLearn.jl) | ARDRegressor, AdaBoostClassifier, AdaBoostRegressor, AffinityPropagation, AgglomerativeClustering, BaggingClassifier, BaggingRegressor, BayesianLDA, BayesianQDA, BayesianRidgeRegressor, BernoulliNBClassifier, Birch, ComplementNBClassifier, DBSCAN, DummyClassifier, DummyRegressor, ElasticNetCVRegressor, ElasticNetRegressor, ExtraTreesClassifier, ExtraTreesRegressor, FeatureAgglomeration, GaussianNBClassifier, GaussianProcessClassifier, GaussianProcessRegressor, GradientBoostingClassifier, GradientBoostingRegressor, HuberRegressor, KMeans, KNeighborsClassifier, KNeighborsRegressor, LarsCVRegressor, LarsRegressor, LassoCVRegressor, LassoLarsCVRegressor, LassoLarsICRegressor, LassoLarsRegressor, LassoRegressor, LinearRegressor, LogisticCVClassifier, LogisticClassifier, MeanShift, MiniBatchKMeans, MultiTaskElasticNetCVRegressor, MultiTaskElasticNetRegressor, MultiTaskLassoCVRegressor, MultiTaskLassoRegressor, MultinomialNBClassifier, OPTICS, OrthogonalMatchingPursuitCVRegressor, OrthogonalMatchingPursuitRegressor, PassiveAggressiveClassifier, PassiveAggressiveRegressor, PerceptronClassifier, ProbabilisticSGDClassifier, RANSACRegressor, RandomForestClassifier, RandomForestRegressor, RidgeCVClassifier, RidgeCVRegressor, RidgeClassifier, RidgeRegressor, SGDClassifier, SGDRegressor, SVMClassifier, SVMLClassifier, SVMLRegressor, SVMNuClassifier, SVMNuRegressor, SVMRegressor, SpectralClustering, TheilSenRegressor | high | †
[TSVD.jl](https://github.com/JuliaLinearAlgebra/TSVD.jl) | TSVDTransformer | high |
[XGBoost.jl](https://github.com/dmlc/XGBoost.jl) | XGBoostRegressor, XGBoostClassifier, XGBoostCount | high |
| Package | Interface Pkg | Models | Maturity | Note
| ------- | ------------- | ------ | -------- | ----
[BetaML.jl](https://github.com/sylvaticus/BetaML.jl) | - | BetaMLGMMImputer, BetaMLGMMRegressor, BetaMLGenericImputer, BetaMLMeanImputer, BetaMLRFImputer, DecisionTreeClassifier, DecisionTreeRegressor, GMMClusterer, KMeans, KMedoids, KernelPerceptronClassifier, MissingImputator, PegasosClassifier, PerceptronClassifier, RandomForestClassifier, RandomForestRegressor | medium |
[Clustering.jl](https://github.com/JuliaStats/Clustering.jl) | [MLJClusteringInterface.jl](https://github.com/JuliaAI/MLJClusteringInterface.jl) | KMeans, KMedoids | high | †
[DecisionTree.jl](https://github.com/bensadeghi/DecisionTree.jl) | [MLJDecisionTreeInterface.jl](https://github.com/JuliaAI/MLJDecisionTreeInterface.jl) | DecisionTreeClassifier, DecisionTreeRegressor, AdaBoostStumpClassifier, RandomForestClassifier, RandomForestRegressor | high |
[EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl) | - | EvoTreeRegressor, EvoTreeClassifier, EvoTreeCount, EvoTreeGaussian | medium | gradient boosting models
[GLM.jl](https://github.com/JuliaStats/GLM.jl) | [MLJGLMInterface.jl](https://github.com/JuliaAI/MLJGLMInterface.jl) | LinearRegressor, LinearBinaryClassifier, LinearCountRegressor | medium | †
[LIBSVM.jl](https://github.com/mpastell/LIBSVM.jl) | [MLJLIBSVMInterface.jl](https://github.com/JuliaAI/MLJLIBSVMInterface.jl) | LinearSVC, SVC, NuSVC, NuSVR, EpsilonSVR, OneClassSVM | high | also via ScikitLearn.jl
[LightGBM.jl](https://github.com/IQVIA-ML/LightGBM.jl) | - | LGBMClassifier, LGBMRegressor | high |
[Flux.jl](https://github.com/FluxML/Flux.jl) | [MLJFlux.jl](https://github.com/FluxML/MLJFlux.jl) | NeuralNetworkRegressor, NeuralNetworkClassifier, MultitargetNeuralNetworkRegressor, ImageClassifier | low |
[MLJLinearModels.jl](https://github.com/JuliaAI/MLJLinearModels.jl) | - | LinearRegressor, RidgeRegressor, LassoRegressor, ElasticNetRegressor, QuantileRegressor, HuberRegressor, RobustRegressor, LADRegressor, LogisticClassifier, MultinomialClassifier | medium |
[MLJModels.jl](https://github.com/JuliaAI/MLJModels.jl) (built-in) | - | StaticTransformer, FeatureSelector, FillImputer, UnivariateStandardizer, Standardizer, UnivariateBoxCoxTransformer, OneHotEncoder, ContinuousEncoder, ConstantRegressor, ConstantClassifier, BinaryThreshholdPredictor | medium |
[MLJText.jl](https://github.com/JuliaAI/MLJText.jl) | - | TfidfTransformer, BM25Transformer, CountTransformer | low |
[MultivariateStats.jl](https://github.com/JuliaStats/MultivariateStats.jl) | [MLJMultivariateStatsInterface.jl](https://github.com/JuliaAI/MLJMultivariateStatsInterface.jl) | LinearRegressor, MultitargetLinearRegressor, RidgeRegressor, MultitargetRidgeRegressor, PCA, KernelPCA, ICA, LDA, BayesianLDA, SubspaceLDA, BayesianSubspaceLDA, FactorAnalysis, PPCA | high |
[NaiveBayes.jl](https://github.com/dfdx/NaiveBayes.jl) | [MLJNaiveBayesInterface.jl](https://github.com/JuliaAI/MLJNaiveBayesInterface.jl) | GaussianNBClassifier, MultinomialNBClassifier, HybridNBClassifier | low |
[NearestNeighborModels.jl](https://github.com/JuliaAI/NearestNeighborModels.jl) | - | KNNClassifier, KNNRegressor, MultitargetKNNClassifier, MultitargetKNNRegressor | high |
[OneRule.jl](https://github.com/roland-KA/OneRule.jl) | - | OneRuleClassifier | experimental |
[OutlierDetectionNeighbors.jl](https://github.com/OutlierDetectionJL/OutlierDetectionNeighbors.jl) | - | ABODDetector, COFDetector, DNNDetector, KNNDetector, LOFDetector | medium |
[OutlierDetectionNetworks.jl](https://github.com/OutlierDetectionJL/OutlierDetectionNetworks.jl) | - | AEDetector, DSADDetector, ESADDetector | medium |
[OutlierDetectionPython.jl](https://github.com/OutlierDetectionJL/OutlierDetectionPython.jl) | - | ABODDetector, CBLOFDetector, COFDetector, COPODDetector, HBOSDetector, IForestDetector, KNNDetector, LMDDDetector, LOCIDetector, LODADetector, LOFDetector, MCDDetector, OCSVMDetector, PCADetector, RODDetector, SODDetector, SOSDetector | high |
[ParallelKMeans.jl](https://github.com/PyDataBlog/ParallelKMeans.jl) | - | KMeans | experimental |
[PartialLeastSquaresRegressor.jl](https://github.com/lalvim/PartialLeastSquaresRegressor.jl) | - | PLSRegressor, KPLSRegressor | experimental |
[ScikitLearn.jl](https://github.com/cstjean/ScikitLearn.jl) | [MLJScikitLearnInterface.jl](https://github.com/JuliaAI/MLJScikitLearnInterface.jl) | ARDRegressor, AdaBoostClassifier, AdaBoostRegressor, AffinityPropagation, AgglomerativeClustering, BaggingClassifier, BaggingRegressor, BayesianLDA, BayesianQDA, BayesianRidgeRegressor, BernoulliNBClassifier, Birch, ComplementNBClassifier, DBSCAN, DummyClassifier, DummyRegressor, ElasticNetCVRegressor, ElasticNetRegressor, ExtraTreesClassifier, ExtraTreesRegressor, FeatureAgglomeration, GaussianNBClassifier, GaussianProcessClassifier, GaussianProcessRegressor, GradientBoostingClassifier, GradientBoostingRegressor, HuberRegressor, KMeans, KNeighborsClassifier, KNeighborsRegressor, LarsCVRegressor, LarsRegressor, LassoCVRegressor, LassoLarsCVRegressor, LassoLarsICRegressor, LassoLarsRegressor, LassoRegressor, LinearRegressor, LogisticCVClassifier, LogisticClassifier, MeanShift, MiniBatchKMeans, MultiTaskElasticNetCVRegressor, MultiTaskElasticNetRegressor, MultiTaskLassoCVRegressor, MultiTaskLassoRegressor, MultinomialNBClassifier, OPTICS, OrthogonalMatchingPursuitCVRegressor, OrthogonalMatchingPursuitRegressor, PassiveAggressiveClassifier, PassiveAggressiveRegressor, PerceptronClassifier, ProbabilisticSGDClassifier, RANSACRegressor, RandomForestClassifier, RandomForestRegressor, RidgeCVClassifier, RidgeCVRegressor, RidgeClassifier, RidgeRegressor, SGDClassifier, SGDRegressor, SVMClassifier, SVMLClassifier, SVMLRegressor, SVMNuClassifier, SVMNuRegressor, SVMRegressor, SpectralClustering, TheilSenRegressor | high | †
[TSVD.jl](https://github.com/JuliaLinearAlgebra/TSVD.jl) | [MLJTSVDInterface.jl](https://github.com/JuliaAI/MLJTSVDInterface.jl) | TSVDTransformer | high |
[XGBoost.jl](https://github.com/dmlc/XGBoost.jl) | [MLJXGBoostInterface.jl](https://github.com/JuliaAI/MLJXGBoostInterface.jl) | XGBoostRegressor, XGBoostClassifier, XGBoostCount | high |

**Note** (†): Some models are missing and assistance is welcome to
complete the interface. Post a message on the Julia #mlj Slack channel
Expand Down

0 comments on commit 02bd898

Please sign in to comment.