Skip to content

Commit

Permalink
build based on 84ef5fc
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Oct 3, 2024
1 parent 3b10520 commit 9792b03
Show file tree
Hide file tree
Showing 34 changed files with 54 additions and 50 deletions.
2 changes: 1 addition & 1 deletion dev/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.10.5","generation_timestamp":"2024-10-02T19:59:41","documenter_version":"1.7.0"}}
{"documenter":{"julia_version":"1.10.5","generation_timestamp":"2024-10-03T03:32:42","documenter_version":"1.7.0"}}
2 changes: 1 addition & 1 deletion dev/accessor_functions/index.html

Large diffs are not rendered by default.

24 changes: 12 additions & 12 deletions dev/anatomy_of_an_implementation/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/common_implementation_patterns/index.html

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions dev/fit_update/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -32,4 +32,4 @@
# Recover saved model and algorithm configuration:
recovered_model = deserialize("my_random_forest.jls")
@assert LearnAPI.algorithm(recovered_model) == forest
@assert predict(recovered_model, Point(), Xnew) == ŷ</code></pre><p><code>Distribution</code> and <code>Point</code> are singleton types owned by LearnAPI.jl. They allow dispatch based on the <a href="reference/#proxy">kind of target proxy</a>, a key LearnAPI.jl concept. LearnAPI.jl places more emphasis on the notion of target variables and target proxies than on the usual supervised/unsupervised learning dichotomy. From this point of view, a supervised algorithm is simply one in which a target variable exists, and happens to appear as an input to training but not to prediction.</p><h2 id="Data-interfaces"><a class="docs-heading-anchor" href="#Data-interfaces">Data interfaces</a><a id="Data-interfaces-1"></a><a class="docs-heading-anchor-permalink" href="#Data-interfaces" title="Permalink"></a></h2><p>Algorithms are free to consume data in any format. However, a method called <a href="obs/#data_interface"><code>obs</code></a> (read as &quot;observations&quot;) gives users and meta-algorithms access to an algorithm-specific representation of input data, which is also guaranteed to implement a standard interface for accessing individual observations, unless the algorithm explicitly opts out. Moreover, the <code>fit</code> and <code>predict</code> methods will also be able to consume these alternative data representations, for performance benefits in some situations.</p><p>The fallback data interface is the <a href="https://github.com/JuliaML/MLUtils.jl">MLUtils.jl</a> <code>getobs/numobs</code> interface (here tagged as <a href="obs/#LearnAPI.RandomAccess"><code>LearnAPI.RandomAccess()</code></a>) and if the input consumed by the algorithm already implements that interface (tables, arrays, etc.) then overloading <code>obs</code> is completely optional. Plain iteration interfaces, with or without knowledge of the number of observations, can also be specified (to support, e.g., data loaders reading images from disk).</p><h2 id="Learning-more"><a class="docs-heading-anchor" href="#Learning-more">Learning more</a><a id="Learning-more-1"></a><a class="docs-heading-anchor-permalink" href="#Learning-more" title="Permalink"></a></h2><ul><li><p><a href="anatomy_of_an_implementation/#Anatomy-of-an-Implementation">Anatomy of an Implementation</a>: informal introduction to the main actors in a new LearnAPI.jl implementation</p></li><li><p><a href="reference/#reference">Reference</a>: official specification</p></li><li><p><a href="common_implementation_patterns/#Common-Implementation-Patterns">Common Implementation Patterns</a>: implementation suggestions for common, informally defined, algorithm types</p></li><li><p><a href="testing_an_implementation/#Testing-an-Implementation">Testing an Implementation</a></p></li></ul></article><nav class="docs-footer"><a class="docs-footer-nextpage" href="anatomy_of_an_implementation/">Anatomy of an Implementation »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.7.0 on <span class="colophon-date" title="Wednesday 2 October 2024 19:59">Wednesday 2 October 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
@assert predict(recovered_model, Point(), Xnew) == ŷ</code></pre><p><code>Distribution</code> and <code>Point</code> are singleton types owned by LearnAPI.jl. They allow dispatch based on the <a href="reference/#proxy">kind of target proxy</a>, a key LearnAPI.jl concept. LearnAPI.jl places more emphasis on the notion of target variables and target proxies than on the usual supervised/unsupervised learning dichotomy. From this point of view, a supervised algorithm is simply one in which a target variable exists, and happens to appear as an input to training but not to prediction.</p><h2 id="Data-interfaces"><a class="docs-heading-anchor" href="#Data-interfaces">Data interfaces</a><a id="Data-interfaces-1"></a><a class="docs-heading-anchor-permalink" href="#Data-interfaces" title="Permalink"></a></h2><p>Algorithms are free to consume data in any format. However, a method called <a href="obs/#data_interface"><code>obs</code></a> (read as &quot;observations&quot;) gives users and meta-algorithms access to an algorithm-specific representation of input data, which is also guaranteed to implement a standard interface for accessing individual observations, unless the algorithm explicitly opts out. Moreover, the <code>fit</code> and <code>predict</code> methods will also be able to consume these alternative data representations, for performance benefits in some situations.</p><p>The fallback data interface is the <a href="https://github.com/JuliaML/MLUtils.jl">MLUtils.jl</a> <code>getobs/numobs</code> interface (here tagged as <a href="obs/#LearnAPI.RandomAccess"><code>LearnAPI.RandomAccess()</code></a>) and if the input consumed by the algorithm already implements that interface (tables, arrays, etc.) then overloading <code>obs</code> is completely optional. Plain iteration interfaces, with or without knowledge of the number of observations, can also be specified (to support, e.g., data loaders reading images from disk).</p><h2 id="Learning-more"><a class="docs-heading-anchor" href="#Learning-more">Learning more</a><a id="Learning-more-1"></a><a class="docs-heading-anchor-permalink" href="#Learning-more" title="Permalink"></a></h2><ul><li><p><a href="anatomy_of_an_implementation/#Anatomy-of-an-Implementation">Anatomy of an Implementation</a>: informal introduction to the main actors in a new LearnAPI.jl implementation</p></li><li><p><a href="reference/#reference">Reference</a>: official specification</p></li><li><p><a href="common_implementation_patterns/#Common-Implementation-Patterns">Common Implementation Patterns</a>: implementation suggestions for common, informally defined, algorithm types</p></li><li><p><a href="testing_an_implementation/#Testing-an-Implementation">Testing an Implementation</a></p></li></ul></article><nav class="docs-footer"><a class="docs-footer-nextpage" href="anatomy_of_an_implementation/">Anatomy of an Implementation »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.7.0 on <span class="colophon-date" title="Thursday 3 October 2024 03:32">Thursday 3 October 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
2 changes: 1 addition & 1 deletion dev/kinds_of_target_proxy/index.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion dev/minimize/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -15,4 +15,4 @@
transform(minimize(model; options...), args...; kwargs...) ==
transform(model, args...; kwargs...)
inverse_transform(minimize(model; options), args...; kwargs...) ==
inverse_transform(model, args...; kwargs...)</code></pre><p>Additionally:</p><pre><code class="language-julia hljs">minimize(minimize(model)) == minimize(model)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaAI/LearnAPI.jl/blob/d59fb984689270b5412bda128701caaae3a4fe9c/src/minimize.jl#L1-L40">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../kinds_of_target_proxy/">« Kinds of Target Proxy</a><a class="docs-footer-nextpage" href="../target_weights_features/">target/weights/features »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.7.0 on <span class="colophon-date" title="Wednesday 2 October 2024 19:59">Wednesday 2 October 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
inverse_transform(model, args...; kwargs...)</code></pre><p>Additionally:</p><pre><code class="language-julia hljs">minimize(minimize(model)) == minimize(model)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaAI/LearnAPI.jl/blob/84ef5fcf7eaaa1a515250a498504eb55b333b07d/src/minimize.jl#L1-L40">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../kinds_of_target_proxy/">« Kinds of Target Proxy</a><a class="docs-footer-nextpage" href="../target_weights_features/">target/weights/features »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.7.0 on <span class="colophon-date" title="Thursday 3 October 2024 03:32">Thursday 3 October 2024</span>. Using Julia version 1.10.5.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Binary file modified dev/objects.inv
Binary file not shown.
Loading

0 comments on commit 9792b03

Please sign in to comment.