This repo is for quick deployment and evaluation of different version of CUDA or Pytorch, also can be a helpful tool to reproduce some of the SOTA papers results. Now added ConvNeXt.
Now includes:
Name | Lib-included | Acc-Err |
---|---|---|
ResNet-18 | torchvision.models | / |
bert-case-uncased | transformers | / |
- CIFAR-10
- ImageNet
- wikitext-2
- A CV model timinig evaluation [PASS]
# [model_name], [device] inside the code
$ python model_timing.py
- A CV model througput evaluation [PASS]
# Throughput Counts
$ python model_throughput.py
# FLOPs and Params Counts
$ python evaluate_models_flops.py
# Max batch test - default resnet18
$ python model_maxbatch.py
- A transformers-based model [WiP]
# run Script failed
$ ./run.sh
# torch transformer model [PASS]
# Test `model.TransformerModel` and `nn.Transformer`
$ python model_para \
--nhid 1024 \
--nlayers 24 \
--clip 0.25 \
--epochs 40 \
--bptt 128 \
--dropout 0.1 \
--ninp 512 \
--nhead 16
./onnx
: generate/export onnx file and run [PASS]nni_example
: NNI running examples [WiP]./profiler
: Usingtorch.profiler.profile
to export the json profiling results. Results in./profile_results
[PASS]
logs
profile_results