-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathGenerate_data.py
207 lines (186 loc) · 8.11 KB
/
Generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding:utf-8 -*-
from __future__ import division
from judging import judging
import random
import numpy as np
import os
import argparse
import copy
from card_to_string_conversion import CARD_TO_STRING
from calc_matrix import Cmatrix
from pyemd import emd
from itertools import combinations,product
STREET = 'flop'
FILE_PATH = 'data/'
'''
Traverse all possible hands and generate a hand representation
@param street the round name
@param file_path the relative path for storing data
@class Gen_data
'''
class Gen_data(Cmatrix):
def __init__(self,
street=None,
file_path='data/',
):
super().__init__(street, file_path)
self.savename = self.get_savename()
assert street in ['river', 'turn', 'flop'], 'The parameter street is error'
if street == 'river':
pass
elif street == 'turn':
self.centroids_5 = self.load_data('river_cluster.csv')
else:
self.centroids_5 = self.load_data('river_cluster.csv')
self.centroids_4 = self.load_data('turn_cluster.csv')
self.matrix = self.get_Euclidean_Matrix(self.centroids_5)
card_to_string = CARD_TO_STRING()
card = card_to_string.rank_table[:6]
flower = card_to_string.suit_table[:2]
self.all_cards = [[i+j] for i in card for j in flower]
'''Cluster center point save file name'''
def get_savename(self):
savenames = {'river':self.file_path + 'river_data.csv',
'turn': self.file_path + 'turn_data.csv',
'flop': self.file_path + 'flop_data.csv'}
return savenames.get(self.street)
'''
Traverse all possible opponents' hands and calculate our winning percentage in the current state
@param free_cards possible hand cards pool
@param hand player's current hand cards
@param public Current 5 public cards
return int win rate
'''
def win_rate_compute(self, free_cards, hand, public):
win_rate = [0 for _ in range(3)]
hand = ''.join(hand)
public = [p[0] for p in public]
public = ''.join(public)
all_opponent = list(combinations(free_cards,2))
all_opponent = list(map(list,all_opponent))
n = len(all_opponent)
for opponent in all_opponent:
opponent = opponent[0][0] + opponent[1][0]
win_rate[judging(hand, opponent, public)] += 1./n
win_rate = win_rate[0] + win_rate[2] / 2.0
return win_rate
'''Generate data in river round'''
def data_generator_5(self):
f = open(self.savename,'wt')
all_state = list(combinations(self.all_cards,7))
all_state = list(map(list,all_state))
state_count = 0
state_num = len(all_state)
for state in all_state:
print('state {0} / {1}:'.format(state_count,state_num))
state_count += 1
all_hand = list(combinations(state,2))
all_hand = list(map(list,all_hand))
hand_count = 0
for hand in all_hand:
print("--- {0} th hand".format(hand_count))
hand_count += 1
hand_card = hand[0] + hand[1]
public_card = [card for card in state
if card not in hand]
free_cards = [card for card in self.all_cards
if card not in state]
win_rate = self.win_rate_compute(free_cards, hand_card, public_card)
to_str = str(win_rate)
f.write(to_str + '\n')
f.close()
'''Generate data in turn round'''
def data_generator_4(self):
f = open(self.savename,'wt')
all_state = list(combinations(self.all_cards,6))
all_state = list(map(list,all_state))
state_count = 0
for state in all_state:
state_num = len(all_state)
print('state {0} / {1}:'.format(state_count,state_num))
state_count += 1
all_hand = list(combinations(state,2))
all_hand = list(map(list,all_hand))
hand_count = 0
for hand in all_hand:
print("--- {0} th hand".format(hand_count))
hand_count += 1
hand_card = hand[0] + hand[1]
public_card_4 = [card for card in state
if card not in hand]
free_cards = [card for card in self.all_cards
if card not in state]
n_turn_count = len(free_cards)
cha = [0 for _ in range(len(self.centroids_5))]
for public_card_1 in free_cards:
public_card = public_card_4 + [public_card_1]
all_opponent_card = copy.deepcopy(free_cards)
all_opponent_card.remove(public_card_1)
win_rate = self.win_rate_compute(all_opponent_card, hand_card, public_card)
index = np.argmin(list(map(lambda x: abs(win_rate - x[0]),self.centroids_5)))
cha[index] += 1. / n_turn_count
cha = list(map(str,cha))
to_str = ','.join(cha)
f.write(to_str + '\n')
f.close()
'''Generate data in flop round'''
def data_generator_3(self):
f = open(self.savename,'wt')
all_state = list(combinations(self.all_cards,5))
all_state = list(map(list,all_state))
state_count = 0
state_num = len(all_state)
for state in all_state:
print('state {0} / {1}:'.format(state_count,state_num))
state_count += 1
all_hand = list(combinations(state,2))
all_hand = list(map(list,all_hand))
hand_count = 0
for hand in all_hand:
print("--- {0} th hand".format(hand_count))
hand_count += 1
hand_card = hand[0] + hand[1]
public_card_3 = [card for card in state
if card not in hand]
free_cards = [card for card in self.all_cards
if card not in state]
n_flod_count = len(free_cards)
cha_2 = [0] * len(self.centroids_4)
for public_card_turn in free_cards:
public_cards_4 = public_card_3 + [public_card_turn]
free_cards_2 = copy.deepcopy(free_cards)
free_cards_2.remove(public_card_turn)
n_turn_count = len(free_cards_2)
cha = [0 for _ in range(len(self.centroids_5))]
for public_card_river in free_cards_2:
public_card_5 = public_cards_4 + [public_card_river]
all_opponent_card = copy.deepcopy(free_cards_2)
all_opponent_card.remove(public_card_river)
win_rate = self.win_rate_compute(all_opponent_card,hand_card,public_card_5)
index = np.argmin(list(map(lambda x: abs(win_rate - x[0]),self.centroids_5)))
cha[index] += 1. / n_turn_count
distance_list = list(map(lambda x: emd(np.array(cha),np.array(x),self.matrix),self.centroids_4))
min_distance_index = np.argmin(distance_list)
cha_2[min_distance_index] += 1 / n_flod_count
to_str = ','.join(list(map(str,cha_2)))
# print(to_str)
f.write(to_str + '\n')
f.close()
'''Main function for generating data'''
def generate_data(self):
if self.street == 'river':
self.data_generator_5()
if self.street == 'turn':
self.data_generator_4()
if self.street == 'flop':
self.data_generator_3()
def get_params():
parser = argparse.ArgumentParser()
parser.add_argument("--street", type=str, default='river')
parser.add_argument("--file_path", type=str, default='data/')
args, _ = parser.parse_known_args()
return args
if __name__ == '__main__':
params = vars(get_params())
data = Gen_data(street=params['street'], file_path=params['file_path'])
data.generate_data()