Jiaheng Hu, Peter Stone, Roberto Martin-Martin
RSS2023
- Clone this repo and its submodules:
git clone https://github.com/JiahengHu/CausalMoMa.git --recursive
-
Install the cloned
iGibson-CausalMoMa
,Minigrid-CausalMoMa
andsb3-CausalMoMa
, following the respectiveREADME.md
instructions. -
Download the required iGibson data. Download HSR mesh data and extract it into
iGibson-CausalMoMa/igibson/data/assets/models/hsr
- Download pre-collected Causal inference data and put them into
data/
. Alternatively, collect new data by running:
# iGibson data
python collect_igibson_data.py
# Minigrid data
python collect_igibson_data.py
- Run causal discovery with one of the config file provided:
python causal_inference.py --config PATH_TO_CONFIG
# e.g., for minigrid
python causal_inference.py --config configs/minigrid_full.json
Results will be stored inside causal/
.
The inferred causal matrix is already put inside train.py
# HSR with Causal MoMa
python train.py -sc --robot hsr
# HSR with Vanilla PPO
python train.py -fc --robot hsr
# Fetch with Causal MoMa
python train.py -sc --robot fetch
# Fetch with Vanilla PPO
python train.py -fc --robot fetch
Results will be stored inside log_dir/
.
@inproceedings{hu2023causal,
title={Causal Policy Gradient for Whole-Body Mobile Manipulation},
author={Hu, Jiaheng and Stone, Peter and Mart{\'\i}n-Mart{\'\i}n, Roberto},
booktitle={arXiv preprint arXiv:2305.04866},
year={2023}
}