Skip to content
This repository has been archived by the owner on Jun 24, 2023. It is now read-only.

Unofficial Pytorch implementation of the paper 'Learning Data Augmentation Strategies for Object Detection'

Notifications You must be signed in to change notification settings

Jasonlee1995/AutoAugment_Detection

Repository files navigation

AutoAugment for Detection Implementation with Pytorch

  • Unofficial implementation of the paper Learning Data Augmentation Strategies for Object Detection

0. Develop Environment

Docker Image
- pytorch/pytorch:1.8.1-cuda11.1-cudnn8-devel
  • Using Single GPU

1. Implementation Details

  • augmentation.py : augmentation class with probability included
  • dataset.py : COCO pytorch dataset
  • functional.py : augmentation functions for augmentation class
  • policy.py : augmentation policy v0, v1, v2, v3, vtest
  • Visualize - Bounding Box Geometric Augmentation.ipynb : experiments of bounding box geometric augmentation
  • Visualize - Color Augmentation.ipynb : experiments of color augmentation
  • Visualize - Geometric Augmentation.ipynb : experiments of geometric augmentation
  • Visualize - Magnitude Check.ipynb : experiments for checking Magnitude is right
  • Visualize - Other Augmentation.ipynb : experiments of left augmentation
  • Visualize - Policy.ipynb : experiments of policy
  • Details
    • range are different so just followed the official code not the paper
    • some of the range are fixed cause of mismatch with magnitude
      • range 0.1 ~ 1.9 for color operation (Color, Contrast, Brightness, Sharpness)
      • but 1 is the default (original image)
      • so in this repo, I code like below
        • instead using 0.1 ~ 1.9, use 0 ~ 0.9 with random change (0.5 probability)
        • e.g.) 0.9 was chosen randomly minus the value (0.9 or -0.9) and add with 1 (1.9 or 0.1)
    • do not use numpy nor opencv for speed and preventing version crashes
    • similar design pattern following torchvision transforms code
    • some of the codes can be improved but not considered in this repo (e.g. TranslateX_Only_BBoxes - translate considering bbox size not fixed pixel)

2. Results

2.1. Color Augmentation

Color Augmentation Color Augmentation

2.2. Geometric Augmentation

Geometric Augmentation Geometric Augmentation

2.3. Bounding Box Augmentation

Bounding Box Augmentation Bounding Box Augmentation

2.4. Other Augmentation

Other Augmentation Other Augmentation

2.5. Policy

Policy Policy

2.6. Magnitude

Magnitude Magnitude

3. Reference

About

Unofficial Pytorch implementation of the paper 'Learning Data Augmentation Strategies for Object Detection'

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published