Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
370 changes: 188 additions & 182 deletions data/prepare_data.py
Original file line number Diff line number Diff line change
@@ -1,182 +1,188 @@
import argparse
from io import BytesIO
import multiprocessing
from multiprocessing import Lock, Process, RawValue
from functools import partial
from multiprocessing.sharedctypes import RawValue
from PIL import Image
from tqdm import tqdm
from torchvision.transforms import functional as trans_fn
import os
from pathlib import Path
import lmdb
import numpy as np
import time


def resize_and_convert(img, size, resample):
if(img.size[0] != size):
img = trans_fn.resize(img, size, resample)
img = trans_fn.center_crop(img, size)
return img


def image_convert_bytes(img):
buffer = BytesIO()
img.save(buffer, format='png')
return buffer.getvalue()


def resize_multiple(img, sizes=(16, 128), resample=Image.BICUBIC, lmdb_save=False):
lr_img = resize_and_convert(img, sizes[0], resample)
hr_img = resize_and_convert(img, sizes[1], resample)
sr_img = resize_and_convert(lr_img, sizes[1], resample)

if lmdb_save:
lr_img = image_convert_bytes(lr_img)
hr_img = image_convert_bytes(hr_img)
sr_img = image_convert_bytes(sr_img)

return [lr_img, hr_img, sr_img]

def resize_worker(img_file, sizes, resample, lmdb_save=False):
img = Image.open(img_file)
img = img.convert('RGB')
out = resize_multiple(
img, sizes=sizes, resample=resample, lmdb_save=lmdb_save)

return img_file.name.split('.')[0], out

class WorkingContext():
def __init__(self, resize_fn, lmdb_save, out_path, env, sizes):
self.resize_fn = resize_fn
self.lmdb_save = lmdb_save
self.out_path = out_path
self.env = env
self.sizes = sizes

self.counter = RawValue('i', 0)
self.counter_lock = Lock()

def inc_get(self):
with self.counter_lock:
self.counter.value += 1
return self.counter.value

def value(self):
with self.counter_lock:
return self.counter.value

def prepare_process_worker(wctx, file_subset):
for file in file_subset:
i, imgs = wctx.resize_fn(file)
lr_img, hr_img, sr_img = imgs
if not wctx.lmdb_save:
lr_img.save(
'{}/lr_{}/{}.png'.format(wctx.out_path, wctx.sizes[0], i.zfill(5)))
hr_img.save(
'{}/hr_{}/{}.png'.format(wctx.out_path, wctx.sizes[1], i.zfill(5)))
sr_img.save(
'{}/sr_{}_{}/{}.png'.format(wctx.out_path, wctx.sizes[0], wctx.sizes[1], i.zfill(5)))
else:
with wctx.env.begin(write=True) as txn:
txn.put('lr_{}_{}'.format(
wctx.sizes[0], i.zfill(5)).encode('utf-8'), lr_img)
txn.put('hr_{}_{}'.format(
wctx.sizes[1], i.zfill(5)).encode('utf-8'), hr_img)
txn.put('sr_{}_{}_{}'.format(
wctx.sizes[0], wctx.sizes[1], i.zfill(5)).encode('utf-8'), sr_img)
curr_total = wctx.inc_get()
if wctx.lmdb_save:
with wctx.env.begin(write=True) as txn:
txn.put('length'.encode('utf-8'), str(curr_total).encode('utf-8'))

def all_threads_inactive(worker_threads):
for thread in worker_threads:
if thread.is_alive():
return False
return True

def prepare(img_path, out_path, n_worker, sizes=(16, 128), resample=Image.BICUBIC, lmdb_save=False):
resize_fn = partial(resize_worker, sizes=sizes,
resample=resample, lmdb_save=lmdb_save)
files = [p for p in Path(
'{}'.format(img_path)).glob(f'**/*')]

if not lmdb_save:
os.makedirs(out_path, exist_ok=True)
os.makedirs('{}/lr_{}'.format(out_path, sizes[0]), exist_ok=True)
os.makedirs('{}/hr_{}'.format(out_path, sizes[1]), exist_ok=True)
os.makedirs('{}/sr_{}_{}'.format(out_path,
sizes[0], sizes[1]), exist_ok=True)
else:
env = lmdb.open(out_path, map_size=1024 ** 4, readahead=False)

if n_worker > 1:
# prepare data subsets
multi_env = None
if lmdb_save:
multi_env = env

file_subsets = np.array_split(files, n_worker)
worker_threads = []
wctx = WorkingContext(resize_fn, lmdb_save, out_path, multi_env, sizes)

# start worker processes, monitor results
for i in range(n_worker):
proc = Process(target=prepare_process_worker, args=(wctx, file_subsets[i]))
proc.start()
worker_threads.append(proc)

total_count = str(len(files))
while not all_threads_inactive(worker_threads):
print("\r{}/{} images processed".format(wctx.value(), total_count), end=" ")
time.sleep(0.1)

else:
total = 0
for file in tqdm(files):
i, imgs = resize_fn(file)
lr_img, hr_img, sr_img = imgs
if not lmdb_save:
lr_img.save(
'{}/lr_{}/{}.png'.format(out_path, sizes[0], i.zfill(5)))
hr_img.save(
'{}/hr_{}/{}.png'.format(out_path, sizes[1], i.zfill(5)))
sr_img.save(
'{}/sr_{}_{}/{}.png'.format(out_path, sizes[0], sizes[1], i.zfill(5)))
else:
with env.begin(write=True) as txn:
txn.put('lr_{}_{}'.format(
sizes[0], i.zfill(5)).encode('utf-8'), lr_img)
txn.put('hr_{}_{}'.format(
sizes[1], i.zfill(5)).encode('utf-8'), hr_img)
txn.put('sr_{}_{}_{}'.format(
sizes[0], sizes[1], i.zfill(5)).encode('utf-8'), sr_img)
total += 1
if lmdb_save:
with env.begin(write=True) as txn:
txn.put('length'.encode('utf-8'), str(total).encode('utf-8'))

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', '-p', type=str,
default='{}/Dataset/celebahq_256'.format(Path.home()))
parser.add_argument('--out', '-o', type=str,
default='./dataset/celebahq')

parser.add_argument('--size', type=str, default='64,512')
parser.add_argument('--n_worker', type=int, default=3)
parser.add_argument('--resample', type=str, default='bicubic')
# default save in png format
parser.add_argument('--lmdb', '-l', action='store_true')

args = parser.parse_args()

resample_map = {'bilinear': Image.BILINEAR, 'bicubic': Image.BICUBIC}
resample = resample_map[args.resample]
sizes = [int(s.strip()) for s in args.size.split(',')]

args.out = '{}_{}_{}'.format(args.out, sizes[0], sizes[1])
prepare(args.path, args.out, args.n_worker,
sizes=sizes, resample=resample, lmdb_save=args.lmdb)
import argparse
from io import BytesIO
import multiprocessing
from multiprocessing import Lock, Process, RawValue
from functools import partial
from multiprocessing.sharedctypes import RawValue
from PIL import Image
from tqdm import tqdm
from torchvision.transforms import functional as trans_fn
import os
from pathlib import Path
import lmdb
import numpy as np
import time
import sys
import shutil

def resize_and_convert(img, size, resample):
if(img.size[0] != size):
img = trans_fn.resize(img, size, resample)
img = trans_fn.center_crop(img, size)
return img


def image_convert_bytes(img):
buffer = BytesIO()
img.save(buffer, format='png')
return buffer.getvalue()


def resize_multiple(img, sizes=(16, 128), resample=Image.BICUBIC, lmdb_save=False):
lr_img = resize_and_convert(img, sizes[0], resample)
hr_img = resize_and_convert(img, sizes[1], resample)
sr_img = resize_and_convert(lr_img, sizes[1], resample)

if lmdb_save:
lr_img = image_convert_bytes(lr_img)
hr_img = image_convert_bytes(hr_img)
sr_img = image_convert_bytes(sr_img)

return [lr_img, hr_img, sr_img]

def resize_worker(img_file, sizes, resample, lmdb_save=False):
img = Image.open(img_file)
img = img.convert('RGB')
out = resize_multiple(
img, sizes=sizes, resample=resample, lmdb_save=lmdb_save)

return img_file.name.split('.')[0], out

class WorkingContext():
def __init__(self, resize_fn, lmdb_save, out_path, env, sizes):
self.resize_fn = resize_fn
self.lmdb_save = lmdb_save
self.out_path = out_path
self.env = env
self.sizes = sizes

self.counter = RawValue('i', 0)
self.counter_lock = Lock()

def inc_get(self):
with self.counter_lock:
self.counter.value += 1
return self.counter.value

def value(self):
with self.counter_lock:
return self.counter.value

def prepare_process_worker(wctx, file_subset):
for file in file_subset:
i, imgs = wctx.resize_fn(file)
lr_img, hr_img, sr_img = imgs
if not wctx.lmdb_save:
lr_img.save(
'{}/lr_{}/{}.png'.format(wctx.out_path, wctx.sizes[0], i.zfill(5)))
hr_img.save(
'{}/hr_{}/{}.png'.format(wctx.out_path, wctx.sizes[1], i.zfill(5)))
sr_img.save(
'{}/sr_{}_{}/{}.png'.format(wctx.out_path, wctx.sizes[0], wctx.sizes[1], i.zfill(5)))
else:
with wctx.env.begin(write=True) as txn:
txn.put('lr_{}_{}'.format(
wctx.sizes[0], i.zfill(5)).encode('utf-8'), lr_img)
txn.put('hr_{}_{}'.format(
wctx.sizes[1], i.zfill(5)).encode('utf-8'), hr_img)
txn.put('sr_{}_{}_{}'.format(
wctx.sizes[0], wctx.sizes[1], i.zfill(5)).encode('utf-8'), sr_img)
curr_total = wctx.inc_get()
if wctx.lmdb_save:
with wctx.env.begin(write=True) as txn:
txn.put('length'.encode('utf-8'), str(curr_total).encode('utf-8'))

def all_threads_inactive(worker_threads):
for thread in worker_threads:
if thread.is_alive():
return False
return True

def prepare(img_path, out_path, n_worker, sizes=(16, 128), resample=Image.BICUBIC, lmdb_save=False):

resize_fn = partial(resize_worker, sizes=sizes,
resample=resample, lmdb_save=lmdb_save)
files = [p for p in Path(
'{}'.format(img_path)).glob(f'**/*')]

if not lmdb_save:
os.makedirs(out_path, exist_ok=True)
os.makedirs('{}/lr_{}'.format(out_path, sizes[0]), exist_ok=True)
os.makedirs('{}/hr_{}'.format(out_path, sizes[1]), exist_ok=True)
os.makedirs('{}/sr_{}_{}'.format(out_path,
sizes[0], sizes[1]), exist_ok=True)
else:
MAP_SIZE = 1024 ** 4
free = shutil.disk_usage(out_path).free
assert free > MAP_SIZE, 'Not enough space on disk: {} < {}'.format(
free, MAP_SIZE)
env = lmdb.open(out_path, map_size=MAP_SIZE, readhead=False)

if n_worker > 1:
# prepare data subsets
multi_env = None
if lmdb_save:
multi_env = env

file_subsets = np.array_split(files, n_worker)
worker_threads = []
wctx = WorkingContext(resize_fn, lmdb_save, out_path, multi_env, sizes)

# start worker processes, monitor results
for i in range(n_worker):
proc = Process(target=prepare_process_worker, args=(wctx, file_subsets[i]))
proc.start()
worker_threads.append(proc)

total_count = str(len(files))
while not all_threads_inactive(worker_threads):
print("\r{}/{} images processed".format(wctx.value(), total_count), end=" ")
time.sleep(0.1)

else:
total = 0
for file in tqdm(files):
i, imgs = resize_fn(file)
lr_img, hr_img, sr_img = imgs
if not lmdb_save:
lr_img.save(
'{}/lr_{}/{}.png'.format(out_path, sizes[0], i.zfill(5)))
hr_img.save(
'{}/hr_{}/{}.png'.format(out_path, sizes[1], i.zfill(5)))
sr_img.save(
'{}/sr_{}_{}/{}.png'.format(out_path, sizes[0], sizes[1], i.zfill(5)))
else:
with env.begin(write=True) as txn:
txn.put('lr_{}_{}'.format(
sizes[0], i.zfill(5)).encode('utf-8'), lr_img)
txn.put('hr_{}_{}'.format(
sizes[1], i.zfill(5)).encode('utf-8'), hr_img)
txn.put('sr_{}_{}_{}'.format(
sizes[0], sizes[1], i.zfill(5)).encode('utf-8'), sr_img)
total += 1
if lmdb_save:
with env.begin(write=True) as txn:
txn.put('length'.encode('utf-8'), str(total).encode('utf-8'))

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', '-p', type=str,
default='{}/Dataset/celebahq_256'.format(Path.home()))
parser.add_argument('--out', '-o', type=str,
default='./dataset/celebahq')

parser.add_argument('--size', type=str, default='64,512')
parser.add_argument('--n_worker', type=int, default=0 if sys.platform == 'win32' else 3)
parser.add_argument('--resample', type=str, default='bicubic')
# default save in png format
parser.add_argument('--lmdb', '-l', action='store_true')

args = parser.parse_args()

resample_map = {'bilinear': Image.BILINEAR, 'bicubic': Image.BICUBIC}
resample = resample_map[args.resample]
sizes = [int(s.strip()) for s in args.size.split(',')]

args.out = '{}_{}_{}'.format(args.out, sizes[0], sizes[1])
prepare(args.path, args.out, args.n_worker,
sizes=sizes, resample=resample, lmdb_save=args.lmdb)