Skip to content

Benchmark computing Black Scholes formula using different technologies

License

Notifications You must be signed in to change notification settings

IntelPython/BlackScholes_bench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build status Build Status

BlackScholes benchmark

Benchmark computing Black Scholes formula using different technologies.

Prerequisites

  • icc, if compiling native benchmarks. Intel Distribution for Python* 2019 Gold benchmarks used icc 17.0.1.
  • mkl, if compiling native benchmarks with MKL.

Setup

Linux & Mac

  • Run . activate-conda.sh to install miniconda on Linux and Mac
  • Run make to build and run native benchmarks
    • Run make mkl to build and run MKL version
    • Run make nomkl to build and run non-MKL version
    • Run make black_scholes_mkl to only build MKL version
    • Run make black_scholes to only build non-MKL version

Windows

  • Download & install Miniconda3 and MSYS2
  • Run bash from MSYS2 and activate miniconda environment
  • Run ./install-conda-envs.sh to install Python environments

Usage

Native benchmarks

  • Non-MKL version: Run the compiled binary ./black_scholes.
  • MKL version: Run the compiled binary ./black_scholes_mkl.

Python benchmarks

usage: {bs_erf_*.py|run.sh} [-h]
                       [--steps STEPS] [--step STEP] [--chunk CHUNK]
                       [--size SIZE] [--repeat REPEAT] [--dask DASK]
                       [--text TEXT]


optional arguments:
  -h, --help       show this help message and exit
  --steps STEPS    Number of steps
  --step STEP      Factor for each step
  --chunk CHUNK    Chunk size for Dask
  --size SIZE      Initial data size
  --repeat REPEAT  Iterations inside measured region
  --dask DASK      Dask scheduler: sq, mt, mp
  --text TEXT      Print with each result

See also

"Accelerating Scientific Python with Intel Optimizations" by Oleksandr Pavlyk, Denis Nagorny, Andres Guzman-Ballen, Anton Malakhov, Hai Liu, Ehsan Totoni, Todd A. Anderson, Sergey Maidanov. Proceedings of the 16th Python in Science Conference (SciPy 2017), July 10 - July 16, Austin, Texas

About

Benchmark computing Black Scholes formula using different technologies

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published