Skip to content

IITB-LEAP-OCR/document-ocr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

document-ocr

Layout preserving OCR for documents. Includes text, tables and figures. Useful for LEAP OCR and Bhashini apps API call.

Step 1 : Create Virtual Environment

Make sure you are using Python 3.10 and create a virtual environment to install upcoming dependencies

python3 -m venv <myenvpath>

Step 2 : Install Requirements

Use this virtual environment to install the following dependencies

pip install -r requirements.txt

Step 3 : Download Models

From the release section download the two models. Place figure-detector model in 'figures/model' and place sprint.pt for table strcuture recogniiton in 'tables/model' directory

Step 4 : Run the pipeline

Use main.py to set the input file parameters, output set name, language, table, and figures flag and execute as follows.

python3 main.py

Step 5 : Using the UI

You can also use the streamlit UI to execute the pipeline and download the compressed output.

streamlit run app.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published