Skip to content

Hunglg-1430/XMT-Model

Repository files navigation

XMT-Model

New Approach X-Model Transformers Against the Challenge of DEEPFAKE Technology

Requirements:

  • Pytorch >= 1.4

Preprocessing:

Face extraction from video.

We use pretrained YoloV5 on the face for more accurate face recognition.

pip install -r requirements.txt

Train:

pip install -r requirements.txt

To train the model on your own, you can use the following parameters:

  • e: epoch
  • s: session - (g) - GPU or (c) - CPU
  • w: weight decay (default: 0.0000001)
  • l: learning rate (default: 0.001)
  • d: path file
  • b: batch size (default: 32)
  • p: The process of accuracy and loss

Example command:

To train the model using specific parameters:

python train.py -e 15 -s 'g' -l 0.0001 -w 0.0000001 -d data/sample_train_data/ -p

Weights:

xmodel_deepfake_sample.pth: Full weight for detection.

Predict XMT:

  • Predict on Image
python image-prediction.py
  • Predict on Video
python video-prediction.py --video_path --display
python video-prediction.py --video_path --output_path --save

Authors:

  • Le Dang Khoa
  • Le Gia Hung
  • Nguyen Hung Thinh

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages