Hatheway, W., Snoun, H., ur Rehman, H. et al. WRF-MOSIT: a modular and cross-platform tool for configuring and installing the WRF model. Earth Sci Inform (2023). https://doi.org/10.1007/s12145-023-01136-y
This is a BASH script that provides options to install the following Weather Research & Forecasting Model (WRF) packages in 64-bit systems:
-
Weather Research & Forecasting Model (WRF-ARW)
-
Weather Research & Forecasting Model Chemistry (WRF-CHEM)
-
Weather Research & Forecasting Model Hydro Standalone (WRF-Hydro)
-
Weather Research & Forecasting Model Hydro Coupled w/ WRF (WRF-Hydro Coupled)
-
Weather Research & Forecasting Model CMAQ (WRF-CMAQ)
-
Weather Research & Forecasting Model Wildland Fire (WRF-SFIRE)
-
A Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)
-
Basic Nesting is set up
- 64-bit system
- Darwin (MacOS)
- Linux Debian Distro (Ubuntu, Mint, etc)
- Windows Subsystem for Linux (Debian Distro, Ubuntu, Mint, etc)
- Linux Fedora Distro (Centos, Rocky Linux, RHL, etc)
- 350 Gigabyte (GB) of free storage space
- 16GB or more RAM
- 8 or more CPU cores
The default WRF folder is located at:
/home/<username>/<WRF software name>
Where:
<username>is your Linux/MacOS system username.<WRF software name>can be one of:WRFWRF_CHEMWRFHYDROWRF_COUPLEDWRF_SFIREWRF_CMAQCOAWST
Example:
/home/johndoe/WRF_CHEM/
/home/johndoe/WRFHYDRO_Coupled_Intel/
Update this path accordingly when configuring your environment variables or running tools.
export METPLUS_Version=6.2.0
export met_Version_number=12.2.0
export met_VERSION_number=12.2
export METPLUS_DATA=6.2
export WRF_VERSION=4.7.1
export WPS_VERSION=4.6.0
export CMAQ_VERSION=5.5| OS / Model | WRF-ARW | WRF-CHEM | Hydro Standalone | Hydro Coupled | CMAQ | SFIRE | COAWST |
|---|---|---|---|---|---|---|---|
| Ubuntu/Debian (x86_64) | GNU / Intel | GNU / Intel | GNU / Intel | GNU / Intel | GNU only | GNU only | GNU / Intel |
| RHEL/Rocky/CentOS (x86_64) | GNU / Intel | GNU / Intel | GNU / Intel | GNU / Intel | GNU only | GNU only | GNU / Intel |
| macOS (Intel/ARM) | GNU only | GNU only | GNU only | GNU only | Not available | GNU only | Not available |
- Libraries are manually installed in sub-folders utilizing either Intel or GNU Compilers.
- Libraries installed with GNU compilers
- zlib (1.3.1)
- MPICH (4.3.2)
- libpng (1.6.39)
- JasPer (1.900.1)
- HDF5 (1.14.6)
- PHDF5 (1.14.6)
- Parallel-NetCDF (1.14.1)
- NetCDF-C (4.9.3)
- NetCDF-Fortran (4.6.2)
- NetCDF-CXX (4.3.1)
- Miniconda
- Libraries installed with Intel compilers
- zlib (1.3.1)
- libpng (1.6.39)
- JasPer (1.900.1)
- HDF5 (1.14.6)
- PHDF5 (1.14.6)
- Parallel-NetCDF (1.14.1)
- NetCDF-C (4.9.3)
- NetCDF-Fortran (4.6.2)
- Miniconda
- Intel-Basekit
- Intel-HPCKIT
- Intel-Oneapi-Python
- Libraries installed with GNU compilers
- WRF
- WRF v4.7.1
- WPS v4.6.0
- WRF PLUS v4.7.1
- WRFDA 4DVAR v4.7.1
- OBSGRID (Conda Installed - NCAR Command Language)
- WRF-CHEM
- WRF Chem w/KPP v4.7.1
- WPS v4.6.0
- WRFDA Chem 3DVAR
- OBSGRID (Conda Installed - NCAR Command Language)
- WRF-Hydro Standalone
- WRF-Hydro v5.4
- WRF-Hydro Coupled
- WRF-Hydro v5.4
- WRF v4.7.1
- WPS v4.6.0
- OBSGRID (Conda Installed - NCAR Command Language)
- WRF-CMAQ
- WRF v4.5.0
- CMAQ v5.5
- WPS v4.6.0
- WRF-SFIRE
- WRF-SFIRE v2
- WPS v4.2
-
WRF
- Development Testbed Center (DTC) Model Evaluation Tools (MET) v12.1.1
- Development Testbed Center (DTC) Enhanced Model Evaluation Tools (METplus) v6.1.0
- WRF-Python (Conda installed)
- OpenGrADS
- GrADS
- NCAR Command Langauge (Conda installed)
- Climate Data Operators (Conda installed)
-
WRF-CHEM
- Development Testbed Center (DTC) Model Evaluation Tools (MET) v12.1.1
- Development Testbed Center (DTC) Enhanced Model Evaluation Tools (METplus) v6.1.0
- WRF-Python (Conda installed)
- OpenGrADS
- GrADS
- NCAR Command Langauge (Conda installed)
- Climate Data Operators (Conda installed)
- Prep-Chem-SRC v1.5 (GNU only)
- WRF CHEM Tools
- Mozbc
- Megan Bio Emiss
- Megan Bio Data
- Wes Coldens
- ANTHRO EMIS
- EDGAR HTAP
- EPA ANTHO EMIS
- UBC
- Aircraft
- FINN
-
WRF-Hydro Standalone
- Development Testbed Center (DTC) Model Evaluation Tools (MET) v12.1.1
- Development Testbed Center (DTC) Enhanced Model Evaluation Tools (METplus) v6.1.0
- WRF-GIS-Preprocessor (Conda installed)
-
WRF-Hydo Coupled
- Development Testbed Center (DTC) Model Evaluation Tools (MET) v12.1.1
- Development Testbed Center (DTC) Enhanced Model Evaluation Tools (METplus) v6.1.0
- WRF-Python (Conda installed)
- OpenGrADS
- GrADS
- NCAR Command Langauge (Conda installed)
- Climate Data Operators (Conda installed)
- WRF-GIS-Preprocessor (Conda installed)
-
WRF-SFIRE
- Development Testbed Center (DTC) Model Evaluation Tools (MET) v12.1.1
- Development Testbed Center (DTC) Enhanced Model Evaluation Tools (METplus) v6.1.0
- WRF-Python (Conda installed)
- OpenGrADS
- GrADS
- NCAR Command Langauge (Conda installed)
- Climate Data Operators (Conda installed)
-
WRF-CMAQ
- Development Testbed Center (DTC) Model Evaluation Tools (MET) v12.1.1
- Development Testbed Center (DTC) Enhanced Model Evaluation Tools (METplus) v6.1.0
- WRF-Python (Conda installed)
- OpenGrADS
- GrADS
- NCAR Command Langauge (Conda installed)
- Climate Data Operators (Conda installed)
-
COAWST
- Development Testbed Center (DTC) Model Evaluation Tools (MET) v12.1.1
- Development Testbed Center (DTC) Enhanced Model Evaluation Tools (METplus) v6.1.0
- WRF-Python (Conda installed)
- OpenGrADS
- GrADS
- NCAR Command Langauge (Conda installed)
- Climate Data Operators (Conda installed)
- Make sure to download and Homebrew before moving to installation.
cd $HOME
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"
brew install git
cd $HOME/WRF-MOSIT
chmod 775 *.sh
./WRF-MOSIT.sh 2>&1 | tee WRF_MOSIT.log
- (Make sure to download folder into your Home Directory):
cd $HOME
sudo apt install git -y
cd $HOME/WRF-MOSIT
chmod 775 *.sh
./WRF-MOSIT.sh 2>&1 | tee WRF_MOSIT.log
- (Make sure to download folder into your Home Directory):
cd $HOME
sudo (yum or dnf) install git -y
cd $HOME/WRF-MOSIT
chmod 775 *.sh
./WRF-MOSIT.sh 2>&1 | tee WRF_MOSIT.log
Once the script is launched, it will perform the following checks and guide the user through a step-by-step installation process:
- Detects system architecture type (e.g., Intel, AMD).
- Verifies available storage space meets minimum requirements.
Users will be prompted to configure the following options:
-
Compiler Selection
Choose which compiler to use:Intel– Offers improved performance on Intel CPUs. On non-Intel CPUs, performance gains are minimal or negligible.GNU– Broad compatibility and stability across most architectures.
-
Graphics Display Package
Select your preferred visualization software:GrADSOpenGrADS
-
Auto Configuration
Enable one-click install using default/recommended settings. Recommended:Yes -
Secondary WPS Geography Files
Download additional WPS geography datasets.
Recommended:Yes(especially for full functionality) -
Optional WPS Geography Files
Download optional datasets to enhance spatial resolution support.
Recommended:Yes -
WRF Software Selection
Choose which WRF-based model you want to install:WRFWRF-CHEMWRF-HydroWRF-Hydro CoupledWRF-CMAQWRF-SFIRECOAWST
The WRF-MOSIT installation includes several pre-configured Conda environments to support post-processing, visualization, and scripting tools commonly used with WRF output. These are automatically installed during setup:
| Environment Name | Path | Purpose |
|---|---|---|
cdo_stable |
$HOME/<WRF software name>/miniconda3/envs/cdo_stable |
Environment for Climate Data Operators (CDO) – a collection of command-line tools for manipulating and analyzing climate and forecast model data. |
ncl_stable |
$HOME/<WRF software name>/miniconda3/envs/ncl_stable |
Environment for NCAR Command Language (NCL) – used for advanced scientific visualization and analysis of atmospheric data. |
wrf-python |
$HOME/<WRF software name>/miniconda3/envs/wrf-python |
Environment for WRF-Python – a Python package for post-processing WRF model output using NumPy and Matplotlib-compatible interfaces. |
wrfh_gis_env |
$HOME/<WRF software name>/miniconda3/envs/wrfh_gis_env |
Environment for WRF-GIS-Preprocessor – The WRF-Hydro GIS Pre-processor provides various scripts and tools for building the geospatial input files for running a WRF-Hydro simulation. |
These environments ensure tool stability and avoid dependency conflicts by isolating the tools in their own environments. You can activate them using:
conda activate environment_name
-
GNU Compilers
export LD_LIBRARY_PATH=$HOME/WRF/Libs/NETCDF/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$HOME/WRF/Libs/grib2/lib:$LD_LIBRARY_PATH
export PATH=$HOME/WRF/Libs/MPICH/bin:$PATH
export PATH=$HOME/WRF/Libs/grib2/lib:$PATH
export PATH=$HOME/WRF/GrADS/Contents:$PATH
-
Intel Compilers
source /opt/intel/oneapi/setvars.sh
export LD_LIBRARY_PATH=$HOME/WRF_Intel/Libs/NETCDF/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=$HOME/WRF_Intel/Libs/grib2/lib:$LD_LIBRARY_PATH
export PATH=$HOME/WRF_Intel/Libs/grib2/lib:$PATH
export PATH=$HOME/WRF_Intel/GrADS/Contents:$PATH
-
Make sure to change the name of the WRF Folder to whichever version you are using, WRF_CHEM, WRFHYDRO, etc.
*** Tested on Ubuntu 22.04.4 LTS, Ubuntu 24.04.3 LTS, MacOS Ventura, MacOS Sonoma, Centos8, Rocky Linux 9, Windows Sub-Linux Ubuntu***
- Built 64-bit system.
- Tested with current available libraries on 11/01/2025, exceptions have been noted in the script documentation.
- Intel compilers take slightly more time to install packages.
- University of Zadar's Ivan T. - Youtube's meteoadriatic
- GitHub user jamal919
- University of Manchester's Doug L
- University of Tunis El Manar's Hosni S.
- GSL's Jordan S.
- NCAR's Mary B., Christine W., Soren R., & Carl D.
- DTC's Tara J.,Julie P., George M., & John H.
- UCAR's Katelyn F., Jim B., Jordan P., Kevin M.,
Hatheway, W., Snoun, H., ur Rehman, H. et al. WRF-MOSIT: a modular and cross-platform tool for configuring and installing the WRF model. Earth Sci Inform (2023). https://doi.org/10.1007/s12145-023-01136-y
Appel KW, Gilliam RC, Davis N, Zubrow A, Howard SC (2011) Overview of the atmospheric model evaluation tool (AMET) v1.1 for evaluating meteorological and air quality models. Environ Model Softw 26:434–443. https://doi.org/10.1016/J.ENVSOFT.2010.09.007 Article Google Scholar
Brousse O, Martilli A, Foley M, Mills G, Bechtel B (2016) WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid. Urban Clim 17:116–134. https://doi.org/10.1016/J.UCLIM.2016.04.001 Article Google Scholar
Brown B, Jensen T, Gotway JH, Bullock R, Gilleland E, Fowler T, Newman K, Adriaansen D, Blank L, Burek T, Harrold M, Hertneky T, Kalb C, Kucera P, Nance L, Opatz J, Vigh J, Wolff J (2021) The model evaluation tools (MET): more than a decade of community-supported forecast verification. Bull Am Meteorol Soc 102:E782–E807. https://doi.org/10.1175/BAMS-D-19-0093.1 Article Google Scholar
Carslaw DC, Ropkins K (2012) Openair — an R package for air quality data analysis. Environ Model Softw 27–28. https://doi.org/10.1016/J.ENVSOFT.2011.09.008 Chang V (2017) Towards data analysis for weather cloud computing. Knowl-Based Syst 127:29–45. https://doi.org/10.1016/J.KNOSYS.2017.03.003 Article Google Scholar
Coen JL, Cameron M, Michalakes J, Patton EG, Riggan PJ, Yedinak KM (2013) WRF-Fire: coupled Weather–Wildland Fire modeling with the weather research and forecasting model. J Appl Meteorol Climatol 52:16–38. https://doi.org/10.1175/JAMC-D-12-023.1 Article Google Scholar
Fast JD, Gustafson WI, Easter RC, Zaveri RA, Barnard JC, Chapman EG, Grell GA, Peckham SE (2006) Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J Geophys Res Atmos 111. https://doi.org/10.1029/2005JD006721 Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B (2005) Fully coupled online chemistry within the WRF model. Atmos Environ 39:6957–6975. https://doi.org/10.1016/J.ATMOSENV.2005.04.027 Article Google Scholar
Hluchy L (2016) Software support for the execution of WRF (Weather Research and Forecasting) simulations on HPC infrastructures. https://doi.org/10.1109/eScience.2016.7870932 Hoste K, Timmerman J, Georges A, Weirdt S, D (2012) Easybuild: building software with ease. Proc – 2012 SC Companion High Perform. Comput Netw Storage Anal SCC 2012:572–582. https://doi.org/10.1109/SC.COMPANION.2012.81 Maharjan A, Shakya A (2022) Enhancement of WRF Model using CUDA. Interdiscip J Innov Nepal Acad 1:16–22. https://doi.org/10.3126/IDJINA.V1I1.51963 Article Google Scholar
McCaslin et al (2004) 14.4 A Graphical User Interface to Prepare the Standard Initialization for WRF (2004–84Annual_20waf16nw) [WWW Document]. https://ams.confex.com/ams/84Annual/techprogram/paper_69852.htm. Accessed 3.7.23 Meyer D, Riechert M (2019) Open source QGIS toolkit for the advanced research WRF modeling system. Environ Model Softw 112:166–178. https://doi.org/10.1016/J.ENVSOFT.2018.10.018 Article Google Scholar
Muñoz-Esparza D, Kosović B, Jiménez PA, Coen JL (2018) An accurate fire-spread algorithm in the weather research and forecasting model using the level-set method. J Adv Model Earth Syst 10:908–926. https://doi.org/10.1002/2017MS001108 Article Google Scholar
National Oceanic and Atmospheric Administration (NOAA) (2021) WRF User’s Guide. Retrieved from https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V4/user_guide_V4.3.pdf. Accessed 2021 Nikfal A (2023) PostWRF: interactive tools for the visualization of the WRF and ERA5 model outputs. Environ Model Softw 160:105591. https://doi.org/10.1016/J.ENVSOFT.2022.105591 Article Google Scholar
Sanyal J, Zhang S, Dyer J, Mercer A, Amburn P, Moorhead R (2010) Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans Vis Comput Graph 16:1421–1430. https://doi.org/10.1109/TVCG.2010.181 Article Google Scholar
Shi J, Wu Z, Lu G, Li Y (2013) Design and application of WRF computing platform based on B/S structure. Proc – 2013 Int Conf Mechatron Sci Electr Eng Comput MEC 2013:1804–1807. https://doi.org/10.1109/MEC.2013.6885345 Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR/TN. https://doi.org/10.5065/D68S4MVH Skamarock C, Klemp B, Dudhia J, Gill O, Liu Z, Berner J, Wang W, Powers G, Duda G, Barker D, Huang X (2021) A Description of the Advanced Research WRF Model Version 4.3. https://doi.org/10.5065/1DFH-6P97 Wang YQ (2014) MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorol Appl 21:360–368. https://doi.org/10.1002/MET.1345