An end-to-end framework for building intelligent, modular, and production-ready AI systems using LangChain, LangGraph, and Retrieval-Augmented Generation (RAG).
GEN-AI is a hands-on project focused on RAG pipelines, LangChain workflows, and AI agent orchestration.
It demonstrates how to build scalable and interpretable AI systems with structured logic, modular design, and custom retrievers.
- Retrieval-Augmented Generation (RAG) — Ingestion, chunking, embedding, and hybrid vector search.
- LangChain & LangGraph Workflows — Sequential, parallel, and conditional chain execution.
- AI Agents — Custom logic agents and ReAct-style reasoning loops.
- Vector Databases — Integrations with Chroma, FAISS, and OpenSearch.
- Structured Outputs — Pydantic-based output formatting and validation.
- Interactive Notebooks — Ready-to-run Jupyter notebooks for experiments.
GEN-AI: 0-Data Ingestion and Parsing: - data_parsing_pdf.ipynb - Hybrid Retriver.ipynb - chroma-db/ Langchain: - simple_chain.py - parallel_chains.py - conditional_chains.py - chatbot.py LangGraph: - Simple_LangGraph.ipynb - LLM_Powered_LangGraph.ipynb Projects: - AI_Powered_LangGraph.ipynb Vector Embedding and Databases: - Embeddings.ipynb
- main.py
- pyproject.toml
- requirements.txt
- README.md
- Python 3.13
- LangChain
- LangGraph
- Chroma / FAISS / OpenSearch
- Pydantic
- Jupyter Notebooks
- OpenAI / Hugging Face APIs
# Clone the repository
git clone https://github.com/HammadAli08/GEN-AI.git
cd GEN-AI
# (Optional) create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Run main script
python main.py