Skip to content

HFooladi/molax

Repository files navigation

molax

License: MIT Python Version Documentation Status Tests

Molecular active learning with JAX - a lightweight framework for active learning in molecular property prediction.

Installation

git clone https://github.com/yourusername/molax
cd molax
pip install -r requirements.txt

Required dependencies:

jax
flax
optax
rdkit
pandas
numpy

Usage

Basic usage with SMILES data:

from molax.utils.data import MolecularDataset
from molax.models import UncertaintyGCN
from molax.acquisition import combined_acquisition

# Load your data
dataset = MolecularDataset('data/molecules.csv', 
                          smiles_col='smiles', 
                          label_col='property')

# Split dataset
train_data, test_data = dataset.split_train_test(test_size=0.2)

# Initialize model
model = UncertaintyGCN(
    hidden_features=(64, 64),
    output_features=1,
    dropout_rate=0.1
)

# Run active learning loop
# See examples/active_learning.py for complete implementation

Features

  • Graph neural networks implemented in JAX/Flax
  • Uncertainty estimation via MC dropout
  • Multiple acquisition functions
  • Efficient batch selection
  • RDKit-based molecular processing

Examples

Check examples/active_learning.py for a complete active learning pipeline.

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit changes (git commit -m 'Add amazing feature')
  4. Push to branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

MIT License

Citation

@software{molax2025,
  title={molax: Molecular Active Learning with JAX},
  author={Hosein Fooladi},
  year={2025},
  url={https://github.com/hfooladi/molax}
}

About

Molecular active learning with JAX

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages