-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
295 lines (267 loc) · 11.1 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import re
import subprocess
import snakemake.io
from glob import glob
import pandas as pd
import time
# Get a list of sample names from fastq files
#samples = glob_wildcards("data/fastqs/{SampleID}_fwd.fastq.gz").SampleID
samples="samp_447"
# Get a list of directions from fastq files
directions = glob_wildcards("data/fastqs/{SampleID}_{direction}.fastq.gz").direction
# Create target rule for running fastqc
rule run_fastqc:
input: expand("data/fastqc/{SampleID}_{direction}_fastqc.html", SampleID = samples, direction = directions)
rule run_fastp:
input: expand("data/fastqs/{SampleID}_qcd_{direction}.fastq.gz", SampleID = samples, direction = directions)
rule run_human_read_removal:
input:
expand("data/fastqs/{SampleID}_decon_fwd.fastq.gz", SampleID = samples, direction = directions),
expand("data/fastqs/{SampleID}_read_count_fastp.tsv", SampleID = samples)
rule run_megahit:
input: expand("data/assembly/megahit/{SampleID}", SampleID = samples)
rule run_contig_coverage:
input: expand("data/contig_coverage/{SampleID}-metabat_style_contig_coverage.tsv", SampleID = samples)
rule run_metabat2:
input: expand("data/metabat2/{SampleID}/.done", SampleID = samples)
# Rule for running fastqc
rule fastqc:
input:
reads = "data/fastqs/{SampleID}_{direction}.fastq.gz"
output:
report = "data/fastqc/{SampleID}_{direction}_fastqc.html"
params:
out_dir = "data/fastqc"
conda:
"config/conda/fastqc.yaml"
log: "logs/fastqc/{SampleID}_{direction}.log"
resources: time_min = 1000, cpus = 8, mem_mb = 50000
shell:
"""
fastqc -o {params.out_dir} -t {resources.cpus} {input.reads} | tee {log}
"""
rule fastp:
input:
fwd_reads = "data/fastqs/{SampleID}_fwd.fastq.gz",
rev_reads = "data/fastqs/{SampleID}_rev.fastq.gz"
output:
tmp_fwd = temp("data/fastqs/{SampleID}_dedup_tmp_fwd.fastq.gz"),
tmp_rev = temp("data/fastqs/{SampleID}_dedup_tmp_rev.fastq.gz"),
rev_reads = "data/fastqs/{SampleID}_qcd_rev.fastq.gz",
fwd_reads = "data/fastqs/{SampleID}_qcd_fwd.fastq.gz",
json_dedup = "data/fastp/{SampleID}_dedup.json",
html_dedup = "data/fastp/{SampleID}_dedup.html",
html = "data/fastp/{SampleID}.html",
json = "data/fastp/{SampleID}.json"
conda: "config/conda/fastp.yaml"
log: "logs/fastp/{SampleID}.log"
resources: cpus = 16, mem_mb = 60000, tim_min=2880
shell:
"""
# First deduplicate
fastp \
-i {input.fwd_reads} -I {input.rev_reads} \
-o {output.tmp_fwd} -O {output.tmp_rev} \
-h {output.html_dedup} -j {output.json_dedup} \
--thread {resources.cpus} \
-z 3 \
--dedup \
--dup_calc_accuracy 6 2>&1 | tee {log}
# Trim and filter reads, remove adapters
fastp \
-i {output.tmp_fwd} -I {output.tmp_rev} \
-o {output.fwd_reads} -O {output.rev_reads} \
-h {output.html} -j {output.json} \
--thread {resources.cpus} \
-z 9 \
--length_required 50 \
--n_base_limit 5 \
--low_complexity_filter --complexity_threshold 7 \
--detect_adapter_for_pe \
--correction \
--cut_front \
--cut_tail \
--cut_window_size 4 \
--cut_mean_quality 20 \
--overrepresentation_analysis 2>&1 | tee -a {log}
"""
rule bb_index:
input:
"data/references/contaminants/human.fa.gz",
output:
"data/reference/contaminants/ref/genome/1/summary.txt",
index = directory("data/reference/contaminants/ref/")
params:
bbmap_index_path = "data/reference/contaminants"
conda: "config/conda_yaml/main.yaml"
log: "logs/bbmap_index.log"
benchmark:
"benchmarks/bb_index.txt"
resources: cpus = 8, mem_mb = 50000
shell:
"""
bbmap.sh \
ref={input.human_genome} \
path={params.bbmap_index_path} \
t={resources.cpus} \
2>&1 | tee {log}
"""
rule remove_contaminants:
input:
rev_reads = "data/fastqs/{SampleID}_qcd_rev.fastq.gz",
fwd_reads = "data/fastqs/{SampleID}_qcd_fwd.fastq.gz",
human_genome = "data/references/contaminants/human.fa.gz",
spike_ins = "data/references/contaminants/spike-ins.fa",
adapters = "data/references/contaminants/adapters.fa"
#bbmap_index = "data/references/contaminants/ref"
output:
phix_rm_fwd = "data/fastqs/{SampleID}_phix_rm_fwd.fastq.gz",
phix_rm_rev = "data/fastqs/{SampleID}_phix_rm_rev.fastq.gz",
decon_fwd = "data/fastqs/{SampleID}_decon_fwd.fastq.gz",
decon_rev = "data/fastqs/{SampleID}_decon_rev.fastq.gz"
params:
bbmap_index_path = "data/reference/contaminants"
conda: "config/conda/bbmap.yaml"
log: "logs/bbmap/{SampleID}.log"
resources: mem_mb = 120000, cpus = 24, time_min = 2880
shell:
"""
bbmap_mem=$(echo "scale=-1; ({resources.mem_mb}*0.8)/1" | bc)
echo "Job memory= {resources.mem_mb}, bbmap allocated memory=$bbmap_mem because it is greedy"
# Remove PhiX reads
bbduk.sh \
-Xmx${{bbmap_mem}}m -eoom \
in1={input.fwd_reads} \
in2={input.rev_reads} \
out1={output.phix_rm_fwd} \
out2={output.phix_rm_rev} \
t={resources.cpus} k=31 hdist=1 \
ref={input.spike_ins} \
path={params.bbmap_index_path} \
2>&1 | tee -a {log}
# Remove Human reads
echo "\n\n***doing remove contaminants***\n\n" >> {log}
bbmap.sh \
-Xmx${{bbmap_mem}}m -eoom \
in1={output.phix_rm_fwd} \
in2={output.phix_rm_rev} \
outu1={output.decon_fwd} \
outu2={output.decon_rev} \
ref={input.human_genome} \
t={resources.cpus} fast=t \
path={params.bbmap_index_path} \
2>&1 | tee -a {log}
"""
rule count_reads_fastp:
input:
raw_reads_fwd = "data/fastqs/{SampleID}_fwd.fastq.gz",
raw_reads_rev = "data/fastqs/{SampleID}_rev.fastq.gz",
deduped_reads_fwd = "data/fastqs/{SampleID}_dedup_tmp_fwd.fastq.gz",
deduped_reads_rev = "data/fastqs/{SampleID}_dedup_tmp_rev.fastq.gz",
qual_filt_and_trimmed_fwd = "data/fastqs/{SampleID}_qcd_fwd.fastq.gz",
qual_filt_and_trimmed_rev = "data/fastqs/{SampleID}_qcd_rev.fastq.gz",
decon_reads_fwd = "data/fastqs/{SampleID}_decon_fwd.fastq.gz",
decon_reads_rev = "data/fastqs/{SampleID}_decon_rev.fastq.gz"
output:
"data/fastqs/{SampleID}_read_count_fastp.tsv"
resources: cpus=4
shell:
"""
printf "read_state\tfwd_read_count\trev_read_count\n" > {output} &&
printf "raw_reads\t$(($(pigz -dc -p {resources.cpus} {input.raw_reads_fwd} | wc -l) / 4 ))\t$(($(pigz -dc -p {resources.cpus} {input.raw_reads_rev} | wc -l) / 4 ))\n" >> {output} &&
printf "deduped_reads\t$(($(pigz -dc -p {resources.cpus} {input.deduped_reads_fwd} | wc -l) / 4 ))\t$(($(pigz -dc -p {resources.cpus} {input.deduped_reads_rev} | wc -l) / 4 ))\n" >> {output} &&
printf "filt_and_trimmed_reads\t$(($(pigz -dc -p {resources.cpus} {input.qual_filt_and_trimmed_fwd} | wc -l) / 4 ))\t$(($(pigz -dc -p {resources.cpus} {input.qual_filt_and_trimmed_rev} | wc -l) / 4 ))\n" >> {output} &&
printf "decon_reads\t$(($(pigz -dc -p {resources.cpus} {input.decon_reads_fwd} | wc -l) / 4 ))\t$(($(pigz -dc -p {resources.cpus} {input.decon_reads_rev} | wc -l) / 4 ))\n" >> {output}
"""
rule megahit:
input:
decon_reads_fwd = "data/fastqs/{SampleID}_decon_fwd.fastq.gz",
decon_reads_rev = "data/fastqs/{SampleID}_decon_rev.fastq.gz"
output:
assembly_directory = directory("data/assembly/megahit/{SampleID}")
log: "logs/megahit/{SampleID}.log"
conda: "config/conda/megahit.yaml"
resources: cpus = 24, mem_mb = 500000, time_min = 7200
shell:
"""
rm -rf {output.assembly_directory} # for re-running, megahit doesn't overwrite automatically
megahit \
-1 {input.decon_reads_fwd} \
-2 {input.decon_reads_rev} \
-t {resources.cpus} \
--presets meta-sensitive \
-m 0.5 \
-o {output.assembly_directory} 2>&1 | tee -a {log}
"""
rule run_quast:
input:
expand("data/assembly/{SampleID}/quast/report.tsv", SampleID = samples)
rule quast_megahit:
input:
megahit_contigs = "data/assembly/megahit/{SampleID}/final.contigs.fa"
output:
report = "data/assembly/{SampleID}/quast/report.tsv"
params:
out_dir = "data/assembly/{SampleID}/quast"
log: "log/megahit/quast_megahit/{SampleID}.log"
benchmark:
"benchmarks/assembly/quast_megahit/{SampleID}.txt"
conda:
"config/conda/quast.yaml"
resources:
cpus = 1, mem_mb = 20000
shell:
"""
quast.py {input.megahit_contigs} -o {params.out_dir} 2>&1 | tee {log}
"""
rule contig_coverage:
input:
decon_reads_fwd = "data/fastqs/{SampleID}_decon_fwd.fastq.gz",
decon_reads_rev = "data/fastqs/{SampleID}_decon_rev.fastq.gz",
assembly_directory = "data/assembly/megahit/{SampleID}"
output:
coverage_metabat = "data/contig_coverage/{SampleID}-metabat_style_contig_coverage.tsv"
params:
tmpdir = "tmp/coverm_contig_coverage/{SampleID}"
benchmark: "benchmarks/contig_coverage/{SampleID}.txt"
conda: "config/conda/coverm.yaml"
resources: cpus=24, mem_mb=120000, time_min=2880 # standard assemblies
#resources: cpus=24, mem_mb=1000000, time_min=2880, partition = "largemem" # coassembly
priority: 2
shell:
"""
export TMPDIR={params.tmpdir}
[[ "${{HOSTNAME}}" == "cayman" || "${{HOSTNAME}}" == "vondamm" ]] && export TMPDIR=/scratch/$USER
mkdir -p $TMPDIR
coverm contig \
-c data/fastqs/*_decon_fwd.fastq.gz \
-r {input.assembly_directory}/final.contigs.fa \
--bam-file-cache-directory $TMPDIR/{wildcards.SampleID} \
--discard-unmapped \
-t {resources.cpus} \
--mapper minimap2-sr \
--methods metabat \
--output-file {output.coverage_metabat}
rm -r $TMPDIR/{wildcards.SampleID}
"""
rule metabat2:
input:
assembly_directory = "data/assembly/megahit/{SampleID}",
coverm_depth = "data/contig_coverage/{SampleID}-metabat_style_contig_coverage.tsv"
output:
done = touch("data/metabat2/{SampleID}/.done")
params:
bin_name = directory("data/metabat2/{SampleID}/metabat2")
benchmark: "benchmarks/metabat2/{SampleID}.txt"
singularity: "docker://metabat/metabat"
resources: cpus=16, mem_mb=20000, time_min=2880 # standard samples
shell:
"""
metabat2 -i {input.assembly_directory}/final.contigs.fa \
-a {input.coverm_depth} \
-o {params.bin_name} \
-m 2000 \
-t {resources.cpus} \
--unbinned
"""