Skip to content

LIDAR(Livox Horizon) point cloud preprocessing, including point cloud filtering and point cloud feature extraction (edge points and planar points)

Notifications You must be signed in to change notification settings

GCaptainNemo/LOAM-Preprocessing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

激光雷达点云滤波和特征提取

一、介绍

在激光雷达里程计和建图(Lidar Odometry and Mapping, LOAM)任务中,前端在里程计计算位姿前需要对传感器的点云流数据进行滤波(去除噪点)和特征提取处理。

其中点云滤波往往需要根据激光雷达具体的扫描方式、型号、特性以及后续任务等进行调整[4];在点云特征提取方面,论文[3]中率先提出了将点云曲率较大的边缘点(Edge Points)和曲率较小的平面点(Planar Points)作为点云的特征,进行后续ICP匹配,从而减少内存消耗量,后续LOAM论文基本沿用这一方法。

本仓库参考Horizon loam[5]中的点云滤波和特征点提取方法,其中Horizon激光雷达CustomMsg的Tag信息[7]可以用于基本的滤波操作。

调试环境:

二、使用方法

  1. 安装ROS
  2. 安装livox ROS驱动[1, 2, 3]
  3. 安装本仓库
mkdir -p ~/xxx/src
cd ~/xxx/src
catkin_init_workspace
git clone https://github.com/GCaptainNemo/fusion-lidar-camera-ROS.git
cd ..
catkin_make
  1. 运行激光雷达设备驱动
roslaunch livox_ros_driver livox_lidar_msg.launch
  1. 运行filter_node和extract_feature_node节点,并在rviz中显示
roslaunch filter_extract_feature launch_filter_extract.launch

三、效果

提取边缘点(红色)和平面点(蓝色)

四、参考资料

[1] livox 驱动安装

[2] livox SDK安装

[3] Ji Z , Singh S . LOAM: Lidar Odometry and Mapping in Real-time[C]// Robotics: Science and Systems Conference. 2014.

[4] Lin J , Zhang F . Loam_livox: A fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV[J]. 2019.

[5] livox-horizon-loam

[6] livox-CustomPoint格式

[7] livox-CustomPoint-tag信息含义

About

LIDAR(Livox Horizon) point cloud preprocessing, including point cloud filtering and point cloud feature extraction (edge points and planar points)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published