Skip to content

FuouM/FM_nodes

Folders and files

NameName
Last commit message
Last commit date
Jan 20, 2025
Aug 12, 2024
Jul 31, 2024
Aug 11, 2024
Aug 11, 2024
Aug 11, 2024
Aug 11, 2024
Aug 12, 2024
Aug 11, 2024
Aug 11, 2024
Aug 12, 2024
Aug 12, 2024
Aug 3, 2024
Jul 31, 2024
Aug 12, 2024
Aug 12, 2024
Aug 11, 2024
Aug 12, 2024
Jul 31, 2024
Aug 12, 2024
Aug 11, 2024
Aug 12, 2024
Aug 2, 2024
Aug 11, 2024

Repository files navigation

FM_nodes

A collection of ComfyUI nodes.

Click name to jump to workflow

  1. WFEN Face Restore. Paper: Efficient Face Super-Resolution via Wavelet-based Feature Enhancement Network
  2. RealViformer - Paper: Investigating Attention for Real-World Video Super-Resolution
  3. ProPIH. Paper: Progressive Painterly Image Harmonization from Low-level Styles to High-level Styles
  4. CoLIE. Paper: Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations
  5. VFIMamba. Paper: Video Frame Interpolation with State Space Models
  6. ConvIR. Paper: Revitalizing Convolutional Network for Image Restoration
  7. StabStitch. Paper: Eliminating Warping Shakes for Unsupervised Online Video Stitching

Workflows

WFEN

Download the model here and place it in models/wfen/WFEN.pth.

workflow_wfen_facecrop.json

wfen_facecrop

RealViformer

Download the model here and place it in models/realviformer/weights.pth.

workflow_realviformer.json

realviformer_example

(Not a workflow-embedded image)

Cat.Upscale.Compare.mp4

RealViFormer upscale example

ProPIH

Download the vgg_normalised.pth model in the Installation section and latest_net_G.pth in the Train/Test section

models/propih/vgg_normalised.pth
models/propih/latest_net_G.pth

workflow_propih.json

propih

CoLIE

No model needed to be downloaded. Lower loss_mean seems to result in brighter images. Node works with image and batched/video.

workflow_colie_lowlight.json

colie_lowlight

VFIMamba

Download the models from the huggingface page

models/vfimamba/VFIMamba_S.pkl
models/vfimamba/VFIMamba.pkl

You will need to install mamba-ssm, which does not have a prebuilt Windows binary. You will need:

  1. triton. Prebuilt for Python 3.10 and 3.11 can be found here: triton-lang/triton#2881 - https://huggingface.co/madbuda/triton-windows-builds/tree/main
  2. causal-conv1d. Follow this post: NVlabs/MambaVision#14 (comment)
  3. mamba-ssm. Follow this tutorial: https://blog.csdn.net/yyywxk/article/details/140420538. Fork that followed all the steps: https://github.com/FuouM/mamba-windows-build

I've built mamba-ssm for Python 3.11, torch 2.3.0+cu121, which can be obtained here: https://huggingface.co/FuouM/mamba-ssm-windows-builds/tree/main

To install, pip install [].whl

workflow_vfi_mamba.json

example_vfi_mamba

(Not a workflow-embedded image)

Mamba.Cat.5X.mp4

VFIMamba Example (top: Original, bottom: 5X, 20FPS)

ConvIR

Download models in the Pretrained models - gdrive section

workflow_convir.json

convir

models\convir
│ deraining.pkl
│
├─defocus
│   dpdd-base.pkl
│   dpdd-large.pkl
│   dpdd-small.pkl
│
├─dehaze
│   densehaze-base.pkl
│   densehaze-small.pkl
│   gta5-base.pkl
│   gta5-small.pkl
│   haze4k-base.pkl
│   haze4k-large.pkl
│   haze4k-small.pkl
│   ihaze-base.pkl
│   ihaze-small.pkl
│   its-base.pkl
│   its-small.pkl
│   nhhaze-base.pkl
│   nhhaze-small.pkl
│   nhr-base.pkl
│   nhr-small.pkl
│   ohaze-base.pkl
│   ohaze-small.pkl
│   ots-base.pkl
│   ots-small.pkl
│
├─desnow
│   csd-base.pkl
│   csd-small.pkl
│   snow100k-base.pkl
│   snow100k-small.pkl
│   srrs-base.pkl
│   srrs-small.pkl
│
└─modeblur
    convir_gopro.pkl
    convir_rsblur.pkl

StabStitch

Download all 3 models in the Code - Pre-trained model section.

models/stabstitch/temporal_warp.pth
models/stabstitch/spatial_warp.pth
models/stabstitch/smooth_warp.pth

Use interpolate_mode = NORMAL or do_linear_blend = True to eliminate dark borders. Inputs will be resized to 360x480. Recommends using StabStitch Crop Resize.

StabStitch StabStitch Stabilize
stabstitch_stitch.json (Example videos in examples\stabstitch) stabstich_stabilize.json
example_stabstitch_stitch example_stabstitch_stabilize

(Not workflow-embedded images)

Credits

@misc{chobola2024fast,
      title={Fast Context-Based Low-Light Image Enhancement via Neural Implicit Representations}, 
      author={Tomáš Chobola and Yu Liu and Hanyi Zhang and Julia A. Schnabel and Tingying Peng},
      year={2024},
      eprint={2407.12511},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2407.12511}, 
}
@misc{zhang2024vfimambavideoframeinterpolation,
      title={VFIMamba: Video Frame Interpolation with State Space Models}, 
      author={Guozhen Zhang and Chunxu Liu and Yutao Cui and Xiaotong Zhao and Kai Ma and Limin Wang},
      year={2024},
      eprint={2407.02315},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2407.02315}, 
}
@article{cui2024revitalizing,
  title={Revitalizing Convolutional Network for Image Restoration},
  author={Cui, Yuning and Ren, Wenqi and Cao, Xiaochun and Knoll, Alois},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2024},
  publisher={IEEE}
}

@inproceedings{cui2023irnext,
  title={IRNeXt: Rethinking Convolutional Network Design for Image Restoration},
  author={Cui, Yuning and Ren, Wenqi and Yang, Sining and Cao, Xiaochun and Knoll, Alois},
  booktitle={International Conference on Machine Learning},
  pages={6545--6564},
  year={2023},
  organization={PMLR}
}
@article{nie2024eliminating,
  title={Eliminating Warping Shakes for Unsupervised Online Video Stitching},
  author={Nie, Lang and Lin, Chunyu and Liao, Kang and Zhang, Yun and Liu, Shuaicheng and Zhao, Yao},
  journal={arXiv preprint arXiv:2403.06378},
  year={2024}
}