This is the official repo of Scisage.
📄 Paper: https://arxiv.org/abs/2506.12689
📊 Benchmark: https://huggingface.co/datasets/BAAI/SurveyScope
- Multi-source Paper Extraction: Robust crawling from arXiv with fallback mechanisms
- Intelligent Analysis: AI-powered paper understanding and outline generation
- Structured Content Generation: Section-wise detailed analysis with proper citations
- Multi-model Support: Compatible with GPT-4, local models, and cloud services
git clone https://github.com/FlagOpen/SciSage.git
cd SciSage
pip install -r requirements.txt
Edit core/model_factory.py
:
llm_map = {
"gpt-4": AzureChatOpenAI(...),
"gpt-4o-mini": AzureChatOpenAI(...),
}
Edit core/configuration.py
and set your Default model you want to use.
1. cd core
2. SET YOUR SEARCH API KEY, IF YOUR WANT YOUR YOUR LOCAL MODEL, SET THE ENVIRONMENT:
3. bash run.sh
bash run_demo.sh
export GOOGLE_SERPER_KEY="xxx"
## for general search: get from https://serpapi.com/dashboard
export SERPAPI_API_KEY="xxx"
## for Local LLM inference url, change to your local LLM server address
export LOCAL_LLM_HOST="xxx"
python3 server.py
Afater setup server, you can test the server
python3 client.py
SciSage/
├── benchmark/ # Paper extraction tools
│ └── get_paper_info.py # Multi-source paper crawler for benchmark build
├── core/ # Analysis pipeline
│ ├── main_workflow_opt_for_paper.py # Main orchestrator
│ ├── paper_outline_opt.py # Outline generation
│ ├── paper_poolish_opt.py # Content polishing
│ ├── model_factory.py # Model management
│ └── configuration.py # Settings
└── eval/ # Evaluation tools
MIT License - see LICENSE file for details.