-
Notifications
You must be signed in to change notification settings - Fork 55
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add argmin (#318) #346
base: master
Are you sure you want to change the base?
add argmin (#318) #346
Conversation
src/flag_gems/ops/argmin.py
Outdated
import triton.language as tl | ||
|
||
from ..utils import libentry | ||
from ..utils.shape_utils import can_use_int32_index |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please follow the new changes in argmax and use triton_lang_extension
since we made a decision to use int64 indexing everywhere to prevent unexpected overflow.
We used to use a more conservative way to do so by computing the maximum element offset of a tensor but now we decide to make it easier.
See also #327
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
DONE
e4dfbed
to
03956fc
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please add a test case where dim is None.
9a105d0
to
960e189
Compare
|
@iclementine rebase了,帮忙review下 |
from ..utils import libentry | ||
from ..utils import triton_lang_extension as tle | ||
|
||
torch_dtype_to_tl_dtype_and_max_value = { |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这里格式有一些不符合格式化工具检查的结果。冒号前不用加空格,后面加即可。
请使用 pre-commit 工具处理一下。
pip install pre-commit
然后在工程目录 pre-commit install
.
PR Category
Operator, OP Test, Benchmark
Type of Change
New Feature
Description
Support argmin, detail see #318
Issue
Resolves #318
Progress
Performance
A100 test result:
Operator: argmin Performance Test (dtype=torch.float16, mode=cuda, level=comprehensive)
Size Torch Latency (ms) Gems Latency (ms) Gems Speedup Size Detail
SUCCESS 0.019456 0.013312 1.462 [torch.Size([1048576])]
SUCCESS 0.010240 0.010240 1.000 [torch.Size([64, 64])]
SUCCESS 0.055296 0.043008 1.286 [torch.Size([4096, 4096])]
SUCCESS 0.055296 0.043008 1.286 [torch.Size([64, 512, 512])]
SUCCESS 1.888256 1.249280 1.511 [torch.Size([1024, 1024, 1024])]
SUCCESS 0.007168 0.009216 0.778 [torch.Size([4])]
SUCCESS 0.008192 0.009216 0.889 [torch.Size([1024])]
SUCCESS 1.886208 1.249280 1.510 [torch.Size([1073741824])]
SUCCESS 0.008192 0.009216 0.889 [torch.Size([1024, 1])]
SUCCESS 0.014336 0.010240 1.400 [torch.Size([1024, 16])]
SUCCESS 0.017408 0.010240 1.700 [torch.Size([1024, 256])]
SUCCESS 0.026624 0.018432 1.444 [torch.Size([1024, 4096])]
SUCCESS 0.158720 0.106496 1.490 [torch.Size([1024, 65536])]
SUCCESS 0.009216 0.010240 0.900 [torch.Size([64, 64, 1])]
SUCCESS 0.032768 0.010240 3.200 [torch.Size([64, 64, 16])]
SUCCESS 0.019456 0.012288 1.583 [torch.Size([64, 64, 256])]
SUCCESS 0.055296 0.043008 1.286 [torch.Size([64, 64, 4096])]
Operator: argmin Performance Test (dtype=torch.float32, mode=cuda, level=comprehensive)
Size Torch Latency (ms) Gems Latency (ms) Gems Speedup Size Detail
SUCCESS 0.020480 0.014336 1.429 [torch.Size([1048576])]
SUCCESS 0.010240 0.009216 1.111 [torch.Size([64, 64])]
SUCCESS 0.074752 0.066560 1.123 [torch.Size([4096, 4096])]
SUCCESS 0.074752 0.066560 1.123 [torch.Size([64, 512, 512])]
SUCCESS 2.638848 2.404352 1.098 [torch.Size([1024, 1024, 1024])]
SUCCESS 0.007168 0.009216 0.778 [torch.Size([4])]
SUCCESS 0.008192 0.009216 0.889 [torch.Size([1024])]
SUCCESS 2.638848 2.402304 1.098 [torch.Size([1073741824])]
SUCCESS 0.008192 0.009216 0.889 [torch.Size([1024, 1])]
SUCCESS 0.015360 0.010240 1.500 [torch.Size([1024, 16])]
SUCCESS 0.017408 0.011264 1.545 [torch.Size([1024, 256])]
SUCCESS 0.033792 0.027648 1.222 [torch.Size([1024, 4096])]
SUCCESS 0.214016 0.178176 1.201 [torch.Size([1024, 65536])]
SUCCESS 0.009216 0.009216 1.000 [torch.Size([64, 64, 1])]
SUCCESS 0.033792 0.010240 3.300 [torch.Size([64, 64, 16])]
SUCCESS 0.019456 0.014336 1.357 [torch.Size([64, 64, 256])]
SUCCESS 0.074752 0.066560 1.123 [torch.Size([64, 64, 4096])]
Operator: argmin Performance Test (dtype=torch.bfloat16, mode=cuda, level=comprehensive)
Size Torch Latency (ms) Gems Latency (ms) Gems Speedup Size Detail
SUCCESS 0.019456 0.013312 1.462 [torch.Size([1048576])]
SUCCESS 0.010240 0.010240 1.000 [torch.Size([64, 64])]
SUCCESS 0.056320 0.044032 1.279 [torch.Size([4096, 4096])]
SUCCESS 0.056320 0.044032 1.279 [torch.Size([64, 512, 512])]
SUCCESS 1.954816 1.280000 1.527 [torch.Size([1024, 1024, 1024])]
SUCCESS 0.007168 0.009216 0.778 [torch.Size([4])]
SUCCESS 0.008192 0.009216 0.889 [torch.Size([1024])]
SUCCESS 1.972224 1.277952 1.543 [torch.Size([1073741824])]
SUCCESS 0.008192 0.009216 0.889 [torch.Size([1024, 1])]
SUCCESS 0.014336 0.010240 1.400 [torch.Size([1024, 16])]
SUCCESS 0.017408 0.010240 1.700 [torch.Size([1024, 256])]
SUCCESS 0.026624 0.019456 1.368 [torch.Size([1024, 4096])]
SUCCESS 0.162816 0.106496 1.529 [torch.Size([1024, 65536])]
SUCCESS 0.009216 0.010240 0.900 [torch.Size([64, 64, 1])]
SUCCESS 0.033792 0.010240 3.300 [torch.Size([64, 64, 16])]
SUCCESS 0.019456 0.012288 1.583 [torch.Size([64, 64, 256])]
SUCCESS 0.056320 0.044032 1.279 [torch.Size([64, 64, 4096])]