This repository contains Jupyter notebooks and data files for performing PCA (Principal Component Analysis) and data transformation. The main components of this repository are:
ACP_VIz.ipynb
: A notebook for performing PCA analysis and visualizing the results.Transform_Data.ipynb
: A notebook for transforming the data to match target statistics.data/
: A directory containing the data files used in the analysis.
ACP_VIz.ipynb
data/
preprocessed_data/
ACP Data.csv
Indicators.csv
transformed_data.csv
README.md
Transform_Data.ipynb
This notebook performs PCA analysis on the transformed data and visualizes the results. The steps include:
- Loading and exploring the data.
- Calculating statistical indicators.
- Computing the correlation matrix.
- Performing PCA computation.
- Selecting two principal axes.
- Creating an individuals table.
- Plotting the correlation circle.
- Analyzing the correlation between variables and principal components.
This notebook transforms the data to match target statistics. The steps include:
- Loading the original data and target statistics.
- Transforming each variable to match the target statistics.
- Ensuring the transformed data matches new ranges by capping to min/max values.
- Exporting the transformed data to a CSV file.
The data/
directory contains the following files:
preprocessed_data/ACP Data.csv
: The original data file used for PCA analysis.preprocessed_data/Indicators.csv
: The file containing statistical indicators.transformed_data.csv
: The transformed data file used in the PCA analysis.
- Open
Transform_Data.ipynb
and run all cells to transform the data and save it todata/transformed_data.csv
. - Open
ACP_VIz.ipynb
and run all cells to perform PCA analysis and visualize the results.
- Python 3.x
- Jupyter Notebook
- pandas
- seaborn
- matplotlib
- scikit-learn
To install the required packages, run:
pip install pandas seaborn matplotlib scikit-learn