Skip to content

FastLM/CogLoad

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cognitive Load Traces (CLT)

A mid-level interpretability framework for deep transformer models, inspired by Cognitive Load Theory.

Overview

CLTs analyze how models allocate internal resources during reasoning through three components:

  • IL (Intrinsic Load): Task difficulty via attention entropy & representation dispersion
  • EL (Extraneous Load): Process inefficiency via KV-cache misses & decoding stability
  • GL (Germane Load): Schema-building via consolidation & concept reuse

Features

  • Symbolic Framework: CLT_t = (IL_t, EL_t, GL_t)
  • Load-Guided Interventions: 15-30% efficiency improvement
  • Error Prediction: 73% error correlation with CLI spikes

Installation

pip install -r requirements.txt

Quick Start

from transformers import AutoTokenizer, AutoModelForCausalLM
from cogload import CognitiveLoadTraces, CLTVisualizer, LoadGuidedDecoding

model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")

# Compute CLT
clt = CognitiveLoadTraces()
inputs = tokenizer("Solve: 2x + 5 = 15", return_tensors="pt")
clt_trace, cli_trace, _ = clt.compute_clt_trace(model, inputs.input_ids, attention_mask=inputs.attention_mask)

# Visualize
viz = CLTVisualizer()
viz.plot_temporal_traces(clt_trace, cli_trace, save_path="trace.png")
viz.plot_simplex(clt_trace, save_path="simplex.png")

# Load-guided decoding
lgd = LoadGuidedDecoding(tau_warn=0.6, tau_act=0.8)
intervention_history, _ = lgd.apply_interventions(clt_trace, cli_trace, model)

Examples

python examples/gsm8k_example.py   # Math reasoning
python examples/xsum_example.py    # Summarization

Components

IL: H_t = (1/L) Σ entropy + Disp_t = ||h - h̄||
EL: Miss_t = cache_misses/queries + Stab_t = KL(p_t || p_{t-1})
GL: Consol_t = cos(Δh^l, Δh^{l+1}) + Reuse_t = active_concepts/total

Interventions

  • Cache Stabilization (high EL)
  • Decoding Control (high EL)
  • Planning Aid (high IL)
  • Consolidation Aid (high GL)
  • Token Merging (general)

Results

Method GSM8K XSum CLI Corr
Baseline 65.1 29.3 -
CLT + LGD 70.2 33.9 0.87
  • 73% errors align with EL spikes > 0.8
  • 15-30% efficiency improvement
  • Stronger correlations in larger models

Citation

@article{liu2025cognitive,
  title={Cognitive Load Traces as Symbolic and Visual Accounts of Deep Model Cognition},
  author={Liu, Dong and Yu, Yanxuan},
  journal={CogInterp @ NeurIPS 2025},
  year={2025}
}

About

Cognitive Load Traces

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages